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ABSTRACT

We investigate the two-layer quasigeostrophic flow incorporating the effect of

planetary vorticity gradient (β) to address the equilibration of meandering jets around

the midlatitudes, paying particular attention to the baroclinically subcritical regime

in the presence of a small bottom drag. In this regime, no turbulence is predicted to

occur due to (linear) baroclinic instability. However, because of the small drag at the

bottom, an instability grows in the initial stages of the flow, which eventually leads

to turbulence. The flow equilibrates and we register strong nonlinear reorganisation

of the flow structures into potential vorticity staircases. We quantise the various

characteristics associated with the staircase and establish that the presence of such

staircase like structures can be attributed to the steep meridional gradient of the

Coriolis force which resulting in dominant effects of rotation. Additionally, positive

feedback mechanisms and wave turbulence may also contribute to the formation and

retention of these structures.
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Chapter 1

Introduction
Narrow bands of strong meandering winds found in the troposphere of various planets

like the Earth, Jupiter and Saturn are referred to as jet streams. The ones occurring

closer to the poles are called polar jet streams. They occur at higher altitudes typically

of 7 to 12 km above the Earth’s surface. Jet streams correspond to the boundaries

between warm air and cold air.

Figure 1.1: Visualisation of polar jet streams. The fastest winds are represented by
red colour and the slower ones are depicted by blue colour. Source: NASA/Goddard
Space Flight Center.

These winds therefore have a huge impact on the weather conditions of the

midlatitude region. Due to their enormous impact on us and the planet as a

whole, a lot of investigation has been carried out regarding these streams. The

sharp meandering eastward jets at midlatitudes are explained well by the concept

of baroclinic instability [1]. A lot of attention has been paid to the supercritical flow

and the linear behaviour of the instability [2] is well understood, but the nonlinear

equilibration of baroclinically steady flows [3, 4] still requires further investigation.
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1 Introduction

During this study, we aim to explore the effect of planetary vorticity gradient (β).

Various studies have looked at the effect of β [5] and bottom drag [6] independently

and in combination [7] as well but we believe that much needs to be explored and

understood about the nonlinear equilibration of the system for large values of β

(subcritical limit) in the presence of bottom friction.

In particular, we show that in presence of a small damping effect (due to bottom

friction) the subcritical regime can lead to strongly nonlinear structure through which

eventually leads to the formation of sharp jets and ribbon-like structures even when

the flow is baroclinically stable.
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Chapter 2

Baroclinic Flows
Let us consider a fluid parcel which is in hydrostatic balance i.e. the force due to

pressure gradient and the action of gravity on the fluid balance each other.

−∇p
ρ
−∇Φ = 0

=⇒ ∂p

∂z
= −ρg

Here p is the pressure, Φ = gz is the geo-potential, g is the gravitational acceleration

and ρ is the density of the fluid.

We consider the flow for a small Rossby number. Rossby number is a

dimensionless parameter is defined as the ratio of the intrinsic acceleration to the

acceleration associated with the Coriolis force. It is given as U
fL

where U is the

typical horizontal velocity, L is the typical horizontal length scale and f is the Coriolis

parameter.

For small Rossby number, there is a dominant balance between the Coriolis force

and the horizontal pressure gradient in the horizontal direction. This gives rise to

the winds called the geostrophic winds, and the balance is known as the geostrophic

balance.

ug = − 1

ρf

∂p

∂y
(2.1a)

vg =
1

ρf

∂p

∂x
(2.1b)

The combination of hydrostatic and geostrophic balance are the primary mechanism

leads to thermal wind balance and these winds are the primary mechanism for jet

streams.
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2 Baroclinic Flows

The presence of this steady geostrophic flow indicates that a reservoir of potential

energy is present. Baroclinic instability is a mechanism of extraction of energy from

the reservoir of potential energy associated with tilted isopycnals. To understand the

instability, we consider quasigeostrophic (QG) dynamics.

Equations describing the QG dynamics are obtained from primitive equations by

considering asymptotic expansion in terms of Rossby number [8]. The lowest order

term gives geostrophic balance and the flow dynamics obtained at next order in the

asymptotic development is called quasi-geostrophic dynamics. Considering two layers

is the easiest way to account for the stratification. The model is widely used to explain

the dynamics in midlatitude regions.

2.1 Turbulence in two-layer quasi-geostrophic

flows in a β channel

As has been mentioned earlier, baroclinic instability is a mechanism of extraction of

energy from the mean flow in a quasi-geostrophic setting. To explore this is more

detail let us consider a two-layer quasi-geostrophic model which in a β-plane. The

two layers have equal depth and are spread across the dimensions L×L. It should be

noted that this choice of the dimensions isn’t unique. A similar analysis can be carried

out for a channel of any dimension L×W . It is best to introduce a non-dimensional

parameter the domain aspect ratio.

The domain aspect ratio is defined as the ratio of the length of the channel to its

width. For the purpose of this study we considered it equal to unity but the properties

of the flow may depend strongly on this ratio.

It was ensured that 1
kd
<< L, to make sure that the results obtained are consistent

with the geophysical length scale. Another advantage of working in this setting was

that in many cases the instability length scale is ∼ 1
kd

, thus making it possible to
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2 Baroclinic Flows

study inverse energy cascade.

In general, QG dynamics assume L ∼ 1
kd

, but it is standard practice to use this

model even when L >> 1
kd

, to have a basic understanding of planetary dynamics.

The dynamics of the flow can be described using the following equations:

∂tq1 + J(Ψ1, q1) + β∂xΨ1 = 0 (2.2a)

∂tq2 + J(Ψ2, q2) + β∂xΨ2 = 0. (2.2b)

Here β is the gradient of the Coriolis parameter. We consider the flow to be doubly

periodic, i.e. Ψ(x, y) = Ψ(x + L, y) = Ψ(x, y + L). The potential vorticities can be

expressed as a function of stream functions as:

q1 = ∇2Ψ1 +
k2d
2

(Ψ2 −Ψ1) (2.3a)

q2 = ∇2Ψ2 +
k2d
2

(Ψ1 −Ψ2). (2.3b)

Here, kd is the deformation wavenumber, it is the wavenumber corresponding to the

deformation radius.

The deformation radius is the length scale at which geostrophic balance plays

significance i.e. the rotation of Earth comes into the picture. The Rossby radius of

deformation is the length scale of the system, related to its stratification and rotation.

It can be calculated for a given setting using the following expression:

1

kd
=

√
gH

2f0
. (2.4)

where g is the gravitational attraction, H is the height of the fluid and f0 is the

Coriolis parameter.

The value of deformation radius as calculated for the Earth’s ocean and

atmosphere at 45◦ latitude are ∼ 2 × 106 m and ∼ 3 × 106 m. Before proceeding

any further the parameters associated with the dynamics of the flow require some

elaboration.
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2 Baroclinic Flows

2.2 Adimensional parameters

2.2.1 The β-plane

The Coriolis force is the fictitious force which appears in motion due to the rotation

of Earth. The Coriolis frequency f is given by:

f = 2Ω sin(φ), (2.5)

where Ω is the rotation rate of Earth and φ is the latitude of the point of observation.

The parameter f varies with latitude. For a small variation in latitude, the variation

can be approximated to be linear. This is known as the β-plane approximation. It is

known that large values of β tend to stabilise flows in the absence of bottom drag [1].

2.2.2 Criticality ξ

The criticality of a two layer quasi-geostrophic model is defined as follows:

ξ =
Uk2d
2β

(2.6)

The parameter determines the linear instability for the system. For sufficiently large

values of β, the classical criterion for stability is satisfied. In fact, β effect is commonly

considered as a stabilising parameter [1] . However, for the nonlinear model, the

instability can arise even if it is linearly stable [9]. In fact, all the flows become

unstable with respect to baroclininc instability in the presence of bottom drag [6].

We targeted at investigating the effects of β̂ = 1
ξ

on the flow, particularly how the

dynamics of the flow evolves for large values.

2.2.3 Bottom Drag rek

The bottom drag acts as a sink of energy for the instability under consideration. The

growth of the vertical velocity in the lower layer incorporates the Ekman drag. It has
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2 Baroclinic Flows

been already shown that Ekman drag cannot certainly eliminate baroclinic instability

[10]. Although friction can reduce the growth rate of the most unstable mode.

2.3 Evolution of a perturbation around a

prescribed eastward jet

We assume that there is constant eastward flow in the upper layer whereas the lower

layer is at rest. (Ψ̄1 = −Uy, Ψ̄2 = 0). If we assume that the stream function Ψi is

given as Ψi = Ψ̄1 + ψi where ψi is the perturbation around the prescribed flow, we

can easily obtain the linearised equations:

(∂t + U∂x)q1 + β1∂xψ1 = 0 (2.7a)

∂tq2 + β2∂xψ2 = 0. (2.7b)

where

q1 = ∇2ψ1 +
k2d
2

(ψ2 − ψ1) (2.8a)

q2 = ∇2ψ2 +
k2d
2

(ψ1 − ψ2) (2.8b)

and

β1 = β +
k2d
2
U (2.9a)

β2 = β − k2d
2
U. (2.9b)

Assuming ψi = ΨA
i e

ι(kct−kx−ly) and substituting kβ =
√

β
U

, into the solution would

give us the dispersion relation for the 2-layer QG model incorporating β. A similar

analysis has been carried out in Reference [1].

The flow is supercritical in the domain for β̂ < 1 and there exists the baroclinic

instability for this regime. The instability grows during the initial evolution of the

flow and the flow soon becomes turbulent. The supercritical domain has been studied
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2 Baroclinic Flows

extensively during the past. It’s the transition from supercritical to subcritical

domain which reveals certain profound novel results which have been discussed in

the subsequent chapters. Before discussing this transition, it is important to account

for the energy budget involved.

2.4 Energy budget

The energy of the perturbation is the sum of kinetic energy in each layer and of the

available potential energy,

E = KE1 +KE2 + APE, (2.10)

KEi =
1

2

∫
D

dxdy(∇ψi)2, (2.11)

APE =
1

2

∫
D

dxdy(ψ1 − ψ2)
2k2d. (2.12)

Here KEi is the kinetic energy of the ith layer. An important diagnostic quantity

associated with the kinetic energy of the flow is the growth rate. As the name suggests,

the growth rate of any instability is defined as the rate at which an instability grows

or the rate at which the potential energy available is converted to kinetic energy.

2.5 Baroclinic and barotropic decomposition

The barotropic and baroclinic streamfunctions are defined as:

η ≡ 1

2
(ψ1 + ψ2) (2.13a)

τ ≡ 1

2
(ψ1 − ψ2). (2.13b)

The potential vorticities can be expressed in terms of baroclinic and barotropic modes

as:

q1 = ∇2η + (∇2 − k2d)τ (2.14a)

q2 = ∇2η − (∇2 − k2d)τ. (2.14b)

8



2 Baroclinic Flows

and thus the equations describing the flow dynamics become:

(
∂t∇2 + U∂x∇2 + β1∂x

)
η +

(
(∇2 − k2d)(∂t + U∂x) + β1∂x

)
τ = 0 (2.15a)(

∂t∇2 + β2∂x
)
η −

(
∂t(∇2 − k2d) + β2∂x

)
τ = 0 (2.15b)

Assuming plane wave solutions for η and τ and carrying out some simple

manipulations, the adimensional growth rates for barotropic and baroclinic modes

[1] can be obtained as:

σ̂η = k̂

[
1 +

1

K̂2
+

β̂

2(K̂2 − 1)

]
(2.16)

σ̂τ = k̂

[
1 +

β̂ + 1

2(K̂2 − 1)

]
. (2.17)

The decomposition illustrated above is important from the perspective of

understanding geostrophic turbulence. We now move to finding solutions the flow

equations numerically and studying the various aspects of the flow as it transitions

from supercritical to subcritical domain.

9



Chapter 3

Numerical Results
The simulations are performed in a quasi-geostrophic setting using the Phillips model

for baroclinic instability using the package pyqg1. The system of nonlinear equations

describing the flow dynamics are solved by using a pseudo-spectral doubly-periodic

model.

The instability is triggered by setting the potential vorticities to random initial

fluctuations obtained from a uniform distribution. All the results discussed in this

article are obtained from the same set of initial conditions and the corresponding

potential vorticity fields q1 and q2 are represented on Fig. 3.1, however the results

are independent of the initial conditions.

Figure 3.1: Initial potential vorticity profiles in the two layers

The non-dimensional parameters associated with the problem are — criticality

1http://pyqg.readthedocs.io/en/stable/
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3 Numerical Results

(ξ =
Uk2d
β

), bottom drag (r̂ek = rek
Ukd

), deformation radius (set to 1), domain aspect

ratio (L/W ), resolution (∆x/L). The domain aspect ratio for the problem is chosen to

be unity; this choice is not unique and an interesting extension of this work can be to

investigate the flow dynamics for different domain aspect ratios. We also verified that

the results obtained were independent of the resolution. The parameter under study

- β̂(= 1/ξ) is varied from 10−3 to 10 and special attention is paid to the dynamics

around the transition region (around β̂ = 1). The parameters associated with the

problem are summarised in Table 3.1. All the simulations have been performed in the

same configuration except when β̂ ≥ 4.0, for these simulations we used Lx = Ly =

2.5× 105 m.

Parameter Value
Imposed Velocity U = 0.025 ms−1

Channel length Lx = 106 m
Channel width Ly = 106 m
Deformation radius 1/kd = 15000 m
Ratio of heights of the two layers δ = 1
Height of the upper layer H1 = 500 m
Coriolis frequency f = 1.0 rad s−1

Bottom drag r̂ek = 0.01
Horizontal resolution ∆x = ∆y = Lx/128

Planetary vorticity gradient β̂ from 10−4 to 10

Table 3.1: Model parameter for the simulations. All the simulations have been
performed in the same configuration unless specified otherwise

As is mentioned earlier, the QG flows supercritical w.r.t. baroclinic instability

have been studied in much detail in the past. A well established method of predicting

the growth rate of the instability is through linear analysis. Nevertheless we observed

that there is a discrepancy in the growth rate as predicted from linear analysis

and the one estimated from the nonlinear simulations. This is evident from the

semilogarithmic plot of KE as a function of time depicted in Fig. 3.2a.

11



3 Numerical Results

(a) KE as a function of time for β̂ = 0.1 (b) Growth rate as a function of β̂ as
predicted from linear analysis

Figure 3.2: Plots depicting deviation from linear behaviour

For baroclinic flows in the supercritical limit, initially, most of the energy of the

perturbation is concentrated in a single mode but after a short while the flow becomes

turbulent. It continues to remain in the turbulent state which can be inferred from

the potential vorticity profile of the upper layer. There is also a certain isotropy in

the energy spectrum. As we move towards the subcritical regime the mechanism for

the evolution of the flow changed which is discussed in the upcoming section.

3.1 PV homogenisation and appearance of

statistically steady states

As per the predictions form the linear analysis of QG flows, no instability exists when

the flow is subcritical w.r.t to baroclinic instability, however the plot for KE as a

function of time indicates that there indeed exists and instability. By looking at the

evolution of the potential voriticity profile, we determined that the instability grows

in a steady fashion, following which the flow becomes turbulent. Further, the PV

profile homogenises and staircase like structures are obtained. This state of the flow

is statistically steady and further evolution of the profile does not indicate any change.

12



3 Numerical Results

(a) Energy profiles for various β̂

(b) Upper Layer PV profiles for various β̂

Figure 3.3: Temporal evolution of total KE and total APE normalised w.r.t. to initial
KE and the PV profiles for various flow regimes

By looking at the evolution of KE, one can say that a statistically steady state

has been achieved as the KE does not fluctuate as a function of time after a steady

state is obtained. Fig. 3.3a and Fig. 3.3b depict the temporal evolution of KE and

the potential vorticity profile when a statistically steady state is achieved for various

flow regimes.

We move to examining the energy spectrum for the subcritical limit. Fig. 3.4

depicts the temporal evolution of the energy spectrum for β̂ = 4.0. As is evident

from the figure, upon stabilisation, there is an anisotropy in the energy spectrum and

13



3 Numerical Results

(a) Time = 50 years (b) Time = 100 years (c) Time = 150 years

(d) Time = 200 years (e) Time = 250 years (f) Time = 300 years

(g) Time = 350 years (h) Time = 400 years (i) Time = 500 years

Figure 3.4: Zonal anisotropy in the energy spectrum for β̂ = 4.0

considerable fraction of the energy is concentrated in the zonal modes.

We analyse the contribution of the zonal flows to the spectrum. The spectrum in

the Fourier space is computed and the total energy (Etot) is examined as a function

of k for different values of β̂. Rhines, in his celebrated article [11], proposed the k−5

scaling law [12] for the energy spectrum. However, recent studies have established

that the proposed law is not universal, instead the scaling laws are for zonal spectrum

have a dependence on the jet patterns [13]. Fig. 3.6a illustrates that the spectrum

obtained in the vicinity of the β̂ = 1.

14



3 Numerical Results

Figure 3.5: Average ratio of KE in the lower layer to upper layer as a function of β̂

(a) Scaling behaviour of Etot (b) Temporal evolution of Ez and Etot

Figure 3.6: Scaling behaviour for Etot profiles and temporal evolution of Ez and Etot.

As has been mentioned, the PV staircase appears after the flow has stabilised and

persists on further evolution. An evident difference between the statistically steady

states and isotropic turbulence is that most of the energy for the statistically steady

states is concentrated in the zonal modes. A quantitative parameter for identifying

these states would be the ratio Ez/Etot.

It’s noteworthy that there is a rise in this ratio from β̂ = 0.6 onwards. This can

15



3 Numerical Results

Figure 3.7: Ratio of zonal energy to total energy as a function of β̂

be attributed to the fact that the staircase structures start to emerge from β̂ = 0.6

onwards but there is still some contribution from the vortex structures in the PV

profile (refer to Figure 3.8). We now try and quantise the number of stairs obtained

during the statistically steady state.

Figure 3.8: Upper layer PV profile for β̂ = 0.6

16



3 Numerical Results

3.2 Counting the number of stairs

Rhines, in his study of turbulence in beta plane [11], also established the concept of

wavenumbers of zonal jets (Rhine’s scale).

kRh = kβ =

√
β

2U
(3.1)

Following this, there have been many studies paying close attention to

Figure 3.9: Rhines’ scale as obtained from numerical simulations and theoretical
values as a function of β̂.

homogenisation of potential vorticity [14] and emergence of zonal jets.

As illustrated in Figure 3.3b, we observe such homogenisation for the subcritical

domain. Multiple zonal jets appear in the PV profile and we have at our hands a PV

staircase [15]. In this section we aim at counting the number of stairs as a function

of β̂. This can be done effectively by plotting < ∂q
∂y

> as a function of y, where q

is the PV. Due to the staircase like structure, there should be distinct spikes in this

plot. These spikes are indicative of ‘climbing a stair’. By counting the number of

maximas (the number of spikes), we can determine the number of stairs as a function

17



3 Numerical Results

of β̂. A spike is only identified as a stair if the value of < ∂q
∂y
> (< a > indicates the

average of a) exceeds 1/
√

2 times the maximum value. This threshold is represented

by the red line shown in Figure 3.10b. Using the method illustrated by Figure 3.10,

(a) Upper layer PV profile for β̂ = 1.8 (b) ykd as a function of ∂q
∂(ykd)

Figure 3.10: Upper layer PV and ykd as a function of < ∂q
∂(ykd)

> for β̂ = 1.8.

Figure 3.11: No. of stairs as a function of β̂.

we estimated the number of stairs formed as a function of β̂. Figure 3.11 illustrates

these results. The formation of these PV staircases have been discussed in the next

section.

18



3 Numerical Results

3.3 PV staircase

Formation of zonal jets in the Earth’s atmosphere, oceans and in the atmosphere of

other planets, is a phenomena which has been known for a long time. The staircase

like structure and the vortices visible on Jupiter have been studied extensively as

well [16] and much has been debated over the formation of these zonal jets. During

the course of our study, we observed similar jets originating in the PV profiles of

the two-layer QG model lying in a β - channel. The organisation of the PV profiles

into staircase like structures is of great interest and Dritschel and McIntyre [17] have

made certain significant contribution in explaining these structures. In this section

explores the possible reasons for formation of such structures in our model.

It is suspected that for the aforementioned model, the formation of these jets is

due to the inhomogeneous sideways mixing of PV across the gradient. High values

of β̂ can be attributed to steeper meridional gradient of Coriolis force. This results

in more dominant effects of rotation on the fluid which discourages the retention of

vortex like structures formed in the PV profile thus eventually leading to formation

of streamline jets.

The formation of these jets is also accompanied by a positive feedback mechanism

which further encourages the persistence of the staircase like structure. The vortices

experience a shear strain across the boundaries of these jets which acts as a barrier

for the vortices to break through. The weak vortices aren’t able to break through

the barrier and diffuse in the mean flow, the stronger vortices which are able to

break through the barrier eventually diffuse in the mean flow as well but result in

the widening of the staircase. This positive feedback mechanism further sharpens the

jets.

In the celebrated work by Rhines [11], he established that turbulence is necessarily
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3 Numerical Results

accompanied by waves which puts into picture the fact that radiation stress also might

have something to do with the formation of the PV staircase. The radiation stress

induces the currents which further encourage the jet like profile by helping retain the

mean flow initially present.

We believe that this discussion provides an adequate understanding of the novel

findings unveiled through the course of this study and also gives some unique insight

into the problem undertaken.
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Chapter 4

Conclusions
The study revealed many interesting characteristics of the subcritical baroclinic flow.

We observed that in the subcritical regime, there is an instability which grows in the

initial stages of the flow following which the flow becomes turbulent. It is noteworthy

that this turbulence does not occur due to (linear) baroclinic instability. The flow

then equilibrates and we register strong nonlinear reorganisation of the flow structures

into staircases.

The staircase like structure was quantised and we found that the appearance of

such PV staircases can be attributed high values of β̂ implying a steeper meridional

gradient and resulting in dominant effects of rotation accompanied by suitable

positive feedback mechanism and wave turbulence. Also, in this regime, there is

no barotropization which is in contrast with usual picture of geostrophic turbulence.

The reason may be that we are in a regime of weak turbulence close to the one

described by Harper et al. [18].

An extension of this work would be to see how the dynamics of the flow evolve

when the domain aspect ratio is not unity. Also, it might be interesting to explore

what effect does the increase in bottom friction have on the dynamics of the flow.

Does the presence of higher dissipation have any impact on the staircase structure?

21



References
[1] Geoffrey K Vallis. Atmospheric and oceanic fluid dynamics: fundamentals and

large-scale circulation. Cambridge University Press, 2006.

[2] Joseph Pedlosky. Finite-amplitude baroclinic waves. Journal of the Atmospheric

Sciences, 27(1):15–30, 1970.

[3] Mankin Mak. Equilibration in nonlinear baroclinic instability. Journal of the

atmospheric sciences, 42(24):2764–2782, 1985.

[4] BT Willcocks and JG Esler. Nonlinear baroclinic equilibration in the presence

of ekman friction. Journal of Physical Oceanography, 42(2):225–242, 2012.

[5] Patrice Klein and Joseph Pedlosky. A numerical study of baroclinic instability

at large supereriticality. Journal of the atmospheric sciences, 43(12):1243–1262,

1986.

[6] EO Holopainen. On the effect of friction in baroclinic waves1. Tellus,

13(3):363–367, 1961.

[7] Richard D Romea. The effects of friction and β on finite-amplitude baroclinic

waves. Journal of the Atmospheric Sciences, 34(11):1689–1695, 1977.

[8] Joseph Pedlosky. Geophysical fluid dynamics. Springer Science & Business

Media, 2013.

[9] Brian F Farrell and Petros J Ioannou. A theory for the statistical equilibrium

energy spectrum and heat flux produced by transient baroclinic waves. Journal

of the atmospheric sciences, 51(19):2685–2698, 1994.

22



REFERENCES

[10] Shian-Jiann Lin and Raymond T Pierrehumbert. Does ekman friction suppress

baroclinic instability? Journal of the Atmospheric Sciences, 45(20):2920–2933,

1988.

[11] Peter B Rhines. Waves and turbulence on a beta-plane. Journal of Fluid

Mechanics, 69(03):417–443, 1975.

[12] Huei-Ping Huang, Boris Galperin, and Semion Sukoriansky. Anisotropic spectra

in two-dimensional turbulence on the surface of a rotating sphere. Physics of

Fluids, 13(1):225–240, 2001.

[13] Sergey Danilov and David Gurarie. Scaling, spectra and zonal jets in beta-plane

turbulence. Physics of fluids, 16(7):2592–2603, 2004.

[14] Peter B Rhines and William R Young. Homogenization of potential vorticity in

planetary gyres. Journal of Fluid Mechanics, 122:347–367, 1982.

[15] Colm Connaughton, Sergey Nazarenko, and Brenda Quinn. Rossby and drift

wave turbulence and zonal flows: the charney–hasegawa–mima model and its

extensions. Physics Reports, 604:1–71, 2015.

[16] Philip S Marcus. Jupiter’s great red spot and other vortices. Annual Review of

Astronomy and Astrophysics, 31(1):523–569, 1993.

[17] DG Dritschel and ME McIntyre. Multiple jets as pv staircases: the phillips

effect and the resilience of eddy-transport barriers. Journal of the Atmospheric

Sciences, 65(3):855–874, 2008.

[18] Katie L Harper, Sergey V Nazarenko, Sergey B Medvedev, and Colm

Connaughton. Wave turbulence in the two-layer ocean model. Journal of Fluid

Mechanics, 756:309–327, 2014.

23


	Introduction
	Baroclinic Flows
	Turbulence in two-layer quasi-geostrophic flows in a  channel
	Adimensional parameters
	The -plane
	Criticality 
	Bottom Drag rek

	Evolution of a perturbation around a prescribed eastward jet
	Energy budget
	Baroclinic and barotropic decomposition

	Numerical Results
	PV homogenisation and appearance of statistically steady states
	Counting the number of stairs
	PV staircase

	Conclusions

