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Abstract

The distribution of surface winds and currents is important from climatic
and energy production aspects. It is commonly assumed that the distribu-
tion of surface winds and currents speed is Weibull, yet, previous studies
indicated that is assumption is not always valid. An inaccurate probability
distribution function (PDF) of wind (current) statistic can lead to erroneous
power estimation; thus, it is necessary to examine the accuracy of the PDFs
employed. We propose statistical tests to check the validity of an assumed
distribution of wind and current speeds. The main statistical test can be ap-
plied to any distribution and is based on surrogate data where the different
moments of the data are compared with the moments of the surrogate data.
We applied this and other tests to global surface wind and current speeds
and found that the generalized gamma distribution fits the data distribu-
tions better than the Weibull distribution. The percentage of locations that
fall within the confidence level of the assumed distribution varies with the
moment. The third moment is used to estimate the potential power of winds
and currents—we find that 89% (95%) of the wind (current) grid points fall
within the 95% confidence interval of the generalized gamma distribution.
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1. Introduction1

Surface winds and surface ocean currents play a crucial role in regulating2

the weather and climate systems. Driven by the energy of the Sun, winds are3

responsible for movement of air across the globe. Winds and currents span4

a wide range of temporal and spatial scales. By forcing the ocean surface,5

winds generate surface currents; currents transport ocean water (and hence6

heat and salt) and, in this way, affect regional and global climatic conditions7

and circulation. Winds are a major source of ocean kinetic energy—about8

half of the deep ocean energy (∼1 TW) is attributed to winds, and the other9

half, approximately, is attributed to tides [1, 2].10

The increasing interest in alternative forms of energy (“green” energy),11

as a step toward low carbon emissions, has led to a significant increase in12

the use of wind turbines, to convert the kinetic energy (power) of winds13

to electric energy (power). However, surface ocean currents have received14

much less attention as a potential source of energy [3, 4, 5, 6, 7]. Harnessing15

the kinetic energy of surface ocean currents may be a viable complement to16

wind energy because surface currents are less erratic and persist for a longer17

duration of time [8, 9].18

Accurate information regarding the distributions of winds and currents19

can be utilized as a reference for improved ocean and climatic modeling. Ac-20

curate estimation of the probability density functions (PDFs) of surface wind21

and current speeds can be used to reliably estimate their potential power pro-22

duction. Moreover, precise PDFs are required to provide the recurrence time23

of extreme wind and current events, which are essential from an engineering24

perspective. Significant progress has been made in finding the PDFs of sur-25

face wind and current speeds [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,26

22, 23, 24]; however, most of the studies on surface winds and ocean currents27

accept a simplifying hypothesis that the PDF under consideration follows28

the Weibull distribution [10, 11, 12, 13, 14, 15, 25, 16, 20, 26, 23] and the29

Weibull distribution can be used to characterize wind and current speed stat-30

ics accurately. A few studies questioned the use of the Weibull distribution31

as the optimal PDF of surface winds and currents [27, 28, 29, 30, 31] and32

other distributions have been proposed to characterize the speed data.33

For example, the following studies reported different distributions that34

should be used to fit wind speed data: (i) [32] used a mixture of two Weibull35

distributions (with two parameters for each distribution and one proportion-36

ality parameter) to study the wind statistics over the Eastern Mediterranean.37
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(ii) [33] studied the wind statistics of 178 off-shore stations (mainly over38

North America) using the Weibull, Kappa, Wakeby and other distributions,39

and suggested using different PDFs to describe different aspects of the wind40

statistics. (iii) [34] studied the wind speed distribution in the area of Palermo41

using the Weibull, Rayleigh, Lognormal, Gamma, Inverse Gaussian, Pearson42

type V, and Burr distributions. (iv) [22] studied the ERA-40 wind speed43

reanalysis data over Europe and found that the generalized gamma (GG)44

distribution better fits the data. (v) [35] studied wind speed statistics in45

the inner Mongolia region using the two-parameter Weibull, Logistic, and46

Lognormal distributions. (vi) [29] used a two-component mixture of Weibull47

distribution to fit bimodal distributed wind speed. (vii) [36] studied the per-48

formance of four different distributions (two- and three-parameter Weibull,49

Gamma, and Log-normal) to fit wind speed data from Dolný Hričov airport50

in Slovakia and found that the three-parameter Weibull distribution have51

the best fit to the data. (viii) [37] used 13 different distributions to study52

the statistics of hourly wind speed data from 9 stations in the United Arab53

Emirates and found that the (4-parameter) Kappa and the (3-parameter)54

Generalized Gamma distributions provide the best fit to the data; mixture55

of two Weibull distributions (with overall 5 parameters) yielded an even bet-56

ter fit.57

The above studies concentrated on specific regions and focused on the58

statistics of wind speed data. A global analysis of winds above ocean areas59

was performed, e.g., in [38, 17], which suggested that the Weibull distribu-60

tion is a good approximation for the PDF of the wind speed. [39, 17] also61

suggested a stochastic boundary layer model to explain the observed PDF of62

wind speed. The same author also compared the Weibull statistics (param-63

eters and various moments) using various global and local data sources [18],64

such as wind estimations that are based on daily SeaWinds scatterometer65

and the NCEP-NCAR and ECMWF reanalysis.66

In contrast to wind speed, the statistics of surface ocean currents have67

received much less attention. The parameters of the Weibull distribution68

over the global ocean were estimated based on geostrophic altimetry-based69

velocities [20, 40]. In addition, [19] discussed the Weibull parameters of the70

upper equatorial Pacific current speed estimated using six stations’ hourly71

ADCP data. [41] analyzed ocean current statistics from the Gulf Stream72

(North Carolina shore) and found that the Weibull distribution properly fits73

the current speed PDF. The parameters of the Weibull distribution of high74

resolution surface current speeds were also estimated from radar (CODAR)75
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data of the Gulf of Eilat, Israel [42] and of the Nan-Wan Bay, Taiwan [43].76

Other studies [44, 45] investigated surface current velocity components that77

were based on altimetry data and found that the distribution varies from78

Gaussian when focusing on small ocean areas to exponential when dealing79

with extensive ocean areas—they proposed a model to explain their findings.80

The exponential distribution of the velocity components were also reported in81

[46], based on oceanic floats and numerical models [46, 47]. We note, however,82

that the relation between the distribution of the velocity components and the83

distribution of the current speed, which is the focus of this work, is not trivial,84

except when considering the idealized identical Gaussian distribution of the85

velocity components, which will result in the Rayleigh distribution (Weibull86

distribution with the shape parameter, k = 2).87

The brief summary above indicates that the statistical analysis of sur-88

face winds has received much more attention than that of the surface ocean89

current speed, and here, we aim to extend the analysis of the latter. In addi-90

tion, many distributions have been suggested to describe the observed PDF91

of the wind speed. This situation calls for a standard test. Following the92

above, the aim or this study is to present a procedure to quantify the level93

of agreement between an assumed PDF and the actual PDF of both wind94

and current speed data. The proposed procedure is not specific to either95

the Weibull or the GG PDF and depends on the moments of interest. We96

implemented this method on surface winds and currents around the globe97

using the Weibull and the GG PDFs. We found that the GG distribution98

more accurately fits the actual distribution of wind and current speed. In99

addition to the moment-dependent test, we studied other statistical tests.100

The paper is organized as follows. Sec. 2 briefly elaborates the data101

analyzed for this study and in Sec. 3, we present the methodology of the102

present study. The results are then shown in Sec. 4. Sec. 5 discusses103

the estimation of the global distribution of the potential power of winds104

and currents when using the Weibull distribution in comparison to the GG105

distribution. The study is concluded and discussed in Sec. 6.106

2. Data107

We analyzed the ERA-Interim (a global atmospheric reanalysis) 6-hourly108

surface (10 m height) wind speed of the European Centre for Medium-Range109

Weather Forecasts (ECMWF) [48] from 1979 to 2016. The dataset spans the110
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entire globe through a geographical grid of size 480× 240 (spatial resolution111

of 3/4◦ × 3/4◦).112

The surface currents were acquired using satellite altimetry and made113

available by the Copernicus—Marine Environment Monitoring Service (CMEMS),114

http://marine.copernicus.eu and based on Topex/Poseidon between 1993-01-115

01 and 2002-04-23, Jason-1 between 2002-04-24 and 2008-10-18, and OSTM/Jason-116

2 since 2008-10-19; see [49, 50]. The spatial resolution of the altimetry data117

is much finer than that of the winds (grid size: 1440× 720, spatial resolution118

of 1/4◦ × 1/4◦); still, the temporal resolution is one day. The data spans 24119

years, from 1993 to 2016. Both the datasets are freely available online and120

were download from the respective websites of ECMWF and CMEMS.121

3. Methodology122

The Weibull PDF is a two-parameter distribution,123

f(x;λ, k) =
k

λ

(x
λ

)k−1

e−(x/λ)k , (1)

where x ≥ 0, and λ and k are the scale and shape parameters, respectively.124

The Weibull distribution reduces to the Rayleigh distribution when k = 2 and125

to the exponential distribution for k = 1. The GG PDF is a generalization126

of the Weibull PDF and has three parameters, λ, k, and ε127

f(x;λ, k, ε) =
1

Γ(ε)

k

λ

(x
λ

)εk−1

e−(x/λ)k , (2)

where also here x > 0 and Γ(ε) is the gamma function. The GG distribution128

reduces to the Weibull distribution for ε = 1 and to the gamma distribution129

for k = 1.130

Figure 1(a),(b) depicts the Weibull PDFs for λ = 1 (scale parameter) and131

for different values of the shape parameter, k. The PDF decays faster for a132

larger k and, in this way, controls the “shape” of the PDF; the parameter133

λ only shifts the distribution along the x axis without altering the shape134

of the distribution. In Figure 1(c),(d), we present the GG PDF for λ = 1135

and for k = 1, 2 and ε = 1, 2, 3. Figure 1(c) shows that in some cases136

(k = 1), the ε parameter also controls the shape of the distribution. Since137

the GG PDF has three parameters, it can potentially improve the fit to the138

PDF to the data. In Figures 1(e),(f), we present examples of the PDFs of139

two geographical locations surface wind speeds. In these examples, both140
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the Weibull and the GG PDFs were fitted to the data using the maximum141

likelihood criteria. As expected, the GG distribution fits the data better than142

the Weibull distribution. Furthermore, the value of ε estimated for the GG143

fit was different than 1. If the time-series had been truly Weibull-distributed,144

the value of ε would have been about 1. In other cases (such as the case of145

Figure 1(f)), neither the Weibull nor the GG PDF properly fit the PDF of146

the actual wind speed data. The method we propose below aims to identify147

the locations at which either the Weibull or the GG distribution is suitable148

to fit the distribution of the data.149

We used a methodological protocol based on the method of the moments150

used in conjunction with the method of the maximum likelihood estimation151

(MLE) [51, 52] to test the validity of the PDF (here Weibull and GG) hy-152

pothesis for a sample of measurements. The methods, as presented below,153

were applied to every single time series of the dataset at hand; i.e., the time154

series of every grid point were analyzed separately.155

The method of the moments [52], first introduced by Chebyshev in the156

19th century, is a method of estimating population parameters. Assum-157

ing a particular distribution, such as Weibull or GG, for a given sample of158

measurements, the method estimates the sample distribution parameters by159

solving a system of equations that relates the sample parameters to be esti-160

mated with the population moments. This method is used in Appendix B161

to find the Weibull and GG PDF parameters. In contrast, the MLE esti-162

mates the parameter values that maximize the likelihood function, given the163

observations—this method finds the best fit (and hence the optimal PDF164

parameters) to a given observed distribution. The MLE method is used165

throughout this paper.166

The test we propose below is valid for any distribution; as an example,167

we consider the standard distribution for surface wind and current speed, the168

Weibull distribution. The analysis unfolds into the following steps:169

(i) we start by assuming that the series at hand (x) is indeed Weibull-170

distributed (WBL);171

(ii) we estimate the distribution parameters λ and k of x based on the MLE172

method;173

(iii) by using these estimated parameters, λ and k, we generate a large174

number (N = 300) of surrogate Weibull-distributed series Si for i =175
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1, . . . , N where the length of each surrogate series is equal to the length176

of the original series x;177

(iv) we estimate the first mmax moments (i.e., m = 1, . . . ,mmax) of each178

surrogate series Si where the mth moment is µSi
m = 〈Smi 〉 (where 〈·〉179

represents the expected value);180

(v) we calculate the first mmax moments of the original series x, µxm;181

(vi) in parallel, we estimate the 95% confidence intervals (CIs) of each mo-182

ment CIm using the 0.025 and the 0.975 quantiles of the distribution183

of µSi
m ;184

(vii) we benchmark µxm against the corresponding CIm of the surrogate data185

for all the moments. In other words, for each moment, we test whether186

µxm falls within the boundary values (quantiles) defined by CIm.187

If the value of µxm falls within the CI of the mth surrogate moment, CIm,188

the result of the benchmarking is positive, and the null hypothesis is not189

rejected; otherwise, the null hypothesis is rejected, and the conclusion is that190

the PDF of the data is not the assumed one. A positive result indicates that191

the hypothesized distribution, for example the Weibull, is a good approxi-192

mation of the PDF of the data, for the specific moment at hand. It is worth193

emphasizing that the method is “moment-dependent” such that the same194

sample can score a positive result for a given moment and a negative result195

for a different one. We analyzed several moments for theoretical purposes,196

while for most practical applications (for instance, wind speed electric power197

generation), only moments up to three or four are of interest; the Skewness198

and Kurtosis are related to the first three and four moments respectively199

and were analyzed in previous studies [like, 19, 17]. Below, we show the im-200

plementation of the proposed test when assuming the Weibull and the GG201

distributions.202

In addition to the general test proposed above, we propose two other203

tests that are specific to the Weibull and the GG distributions, and these are204

discussed in detail in Appendix B and Appendix C; we implement these tests205

on surface wind and current speed data. Essentially, in the first method, we206

estimate the parameters of either the Weibull or the GG distribution using207

the MLE, then generate surrogate series based on these parameters, then208

use the ratio between the different moments to estimate the parameters of209
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the assumed distribution of both the original data and the surrogate data,210

and then check whether the moment-based parameters fall within the CI211

of the surrogate data moment-based parameters—see Appendix B. In the212

second method, we use the fact that the GG distribution reduces to the213

Weibull distribution when ε = 1. We estimate the Weibull parameters using214

the MLE, then use these parameters to generate surrogate series, and then215

estimate the GG parameters of these surrogate series. The ε parameter of the216

GG distribution should be scattered around 1; by comparing the ε parameter217

of the data to the CI of the ε of the surrogate data, one can conclude whether218

the data is Weibull-distributed or not (see Appendix C). We also applied the219

standard χ2-test and the Kolmogorov-Smirnov test—see Sec. 6.220

4. Results221

We first show and discuss the estimated Weibull parameters for the sur-222

face wind speed and surface current speed. Figure 3 shows the MLE esti-223

mated scale and shape parameters, λ and k, over the entire globe. There is224

a clear difference in the λ of the wind speed over land and over the ocean225

where λ is much smaller over land due to the weaker winds there. This226

is since λ is closely related to the mean speed as the mean wind speed is227

〈s〉 = λΓ(1 + 1/k), and since Γ(1 + 1/k) ∼ 0.9 for the relevant range of228

k = 1 − 5, λ is proportional to the mean speed; i.e., 〈s〉 ≈ 0.9λ. Thus, the229

scale parameter λ is large in regions of enhanced winds, such as storm tracks230

and over the Antarctic Ocean. Generally speaking, the shape parameter k of231

the wind speed Weibull distribution is smaller over land although there are232

some exceptions like Antarctica. We note that the winds over the tropical233

ocean are characterized by a large k.234

Similarly, with reference to the ocean surface currents, the scale parameter235

λ also reflects the mean current distribution where, for example, the Gulf236

Stream, the Kuroshio Current, the Equatorial Current, and the Agulhas237

Current are clearly visible. Unlike the scale parameter λ, the shape parameter238

k is almost uniformly distributed over the ocean; no trivial geographical239

pattern can be extrapolated from the distribution of k. The distributions of240

the scale and shape parameters, λ and k, for the surface wind and current241

speed are presented in Fig. A.11 where it is clear that the range of k for242

the currents is smaller in comparison to the k parameter of the winds. This243

smaller k for the surface currents may be partially attributed to the fact244

that the surface of the ocean is forced by the wind stress whose value is, at245

8



least, the square of the surface wind speed. The zonal mean of the λ and k246

parameters of the winds and currents are presented in Fig. A.12 where the247

λ of the winds peak at the mid-latitudes of the southern ocean and the λ248

of the currents peak at the equator. The shape parameter k of the surface249

currents is almost uniformly distributed over almost all latitudes, in contrast250

to the large k for the surface winds for latitudes ∼40◦S and at the tropical251

regions. The results described above are similar to the results discussed in252

[17] and in [40].253

The GG distribution is a generalization of the Weibull distribution, and254

below, we show and discuss the MLE-fitted GG distribution parameters, λ,255

k and ε. Figure 4 depicts the estimated parameters of the surface wind speed256

data. In general, the λ and k parameters of the Weibull distribution (Fig.257

3a,b) are comparable to the corresponding GG λ and k parameters presented258

in Fig. 4a,b; however, the GG parameters are typically larger and span a259

larger range than the Weibull-estimated parameters. This can be more easily260

seen in Fig. A.11a,b where the distribution of both λ and k is broader for261

the GG parameters. The zonal mean of the estimated parameters shown262

in Fig. A.12a,b indicates that while the pattern of the Weibull parameters263

is similar to the pattern of the GG parameters, the GG parameters span a264

larger range. For example, the value of λ is larger around 50◦S-60◦S, where265

the GG one is larger than the Weibull one. A similar situation is observed266

for the k parameter (shown in Fig. A.12b) where the GG k is much larger267

than the Weibull one for the tropics and around 50◦S-60◦S and is smaller268

than the Weibull one for the high latitudes. The GG ε parameter of the269

surface winds is shown in Fig. 4c, and it seems to be larger over land, in270

contrast to the k parameter. The relation between the k and ε parameters of271

the GG distribution is plotted in Fig. 4d, and it is clear that the two are not272

totally independent. The dependence between the two can be approximated273

by a power law relation, i.e., ε ∝ k−4/3, indicating a large ε for a small k274

and vice versa. We have no explanation for this apparent relation. Despite275

the above, one should remember that the approximate power law relation276

is not strict and that there is variability around this relation, making the277

GG distribution a better approximation for the PDF of the observed surface278

winds and surface currents; see below. We note that we could not identify a279

similar relation for other parameter combinations.280

We repeated the estimation of the GG distribution parameters for the281

surface ocean current speed (Fig. 5). As for the surface wind speed field,282

also here the λ and k parameters of the Weibull are similar to the correspond-283
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ing GG parameters, although the latter span a wider range of parameters,284

especially for the k parameters (Fig. A.11d,e). In comparison to the GG285

parameters of the surface wind speed, those of the surface currents are re-286

stricted to a narrower range of parameters, as we observed for the Weibull287

parameters of the winds and currents. The zonal mean of the surface cur-288

rent speed GG parameters is very similar to the Weibull ones. Large ε and289

small k are observed at the high latitudes, but these values could be due to290

the partial data coverage, both in space and time, at these latitudes. The291

relation of the ε parameter versus the k parameter is presented in Fig. 5d292

where the power law relation between the two (ε ∝ k−4/3) seems to hold here293

as well; however, the variability around this relation is not small, enabling a294

better fit of the GG distribution to the observed distribution of the surface295

current speed.296

In Sec. 3 and in Fig. 2, we described a general method to verify whether297

a hypothesized PDF properly fits the PDF of data under investigation (in298

our case, wind and current speed). This method depends on the moment and299

on the prescribed CI. In Fig. 6, we present a map showing whether the third300

moment of the data falls within or outside the 95% CI of the third moment of301

the surrogate data. We use the third moment as it is often used to calculate302

the potential wind power. Fig. 6a,b depicts the results for the surface wind303

speed when assuming that the underlying PDF is Weibull (Fig. 6a) and GG304

(Fig. 6b). It is apparent that the null hypothesis of the Weibull distribution305

is not rejected over the ocean, while over extensive land areas (e.g., North and306

South America and Asia), the null hypothesis is rejected such that one cannot307

conclude that the underlying distribution is indeed Weibull. The Weibull null308

hypothesis is not rejected for 78% of the global area. When assuming that309

the GG PDF is the underlying distribution, the situation improves, and the310

null hypothesis is rejected only for 11% of the global area (Fig. 6b). Thus,311

as expected, the GG PDF better fits the distribution of the surface wind312

speed, especially over land. As for the surface current speed (Fig. 6c,d),313

here the situation is better, for both the Weibull and the GG distributions,314

where 80% (Weibull) and 95% (GG) of the analyzed area falls within the315

CI of the assumed distribution. Based the above, one can conclude that316

when focusing on the third moment (using the 95% CI), both the Weibull317

and the GG distributions are adequate distributions for both the surface318

wind and the current speed; the GG distribution performs better than the319

Weibull distribution by more than 10%, and thus is a better choice for the320

distribution of the data.321
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The ratio (or percentage) of the analyzed global area that falls within322

the 95% CI of the assumed distribution (in our case, either Weibull or GG)323

depends on the moment; here, we use the standard 95% CI, but obviously, the324

ratio will increase for larger CI and decrease for smaller CI. Fig. 7 shows this325

ratio as a function of the moment, for the Weibull and GG distributions of326

surface winds and surface currents. In general, there is a decreasing tendency327

of the ratio as the moment increases. In addition, there are more grid points328

that fall within the GG distribution CI (except m = 1 for GG winds) than329

within the Weibull ones, and the ratio for the surface current speed is larger330

than the surface wind speed. The above situation may vary for moments331

larger than m = 7. The ratio of the area that is within the CI drops to low332

values for large moments.333

In this section, we considered the surrogate data test described in Sec. 3,334

which is applicable to general distribution and which tests each moment sep-335

arately. In Appendix B and Appendix C, we present results that are specific336

to the Weibull and the GG distributions, where we use a set of moments to337

test the null hypothesis of underlying Weibull or GG distributions. These338

results indicate that a much smaller analyzed global area can be associated339

with the Weibull or the GG distribution. In addition, the χ2-test and the340

Kolmogorov-Smirnov test yielded a limited area that falls within the CI; see341

Sec. 6 and Figs. 9, 10.342

5. Winds and Oceans — Power Reservoirs343

Apart from being pivotal to the dynamics of the ocean and the at-344

mosphere, winds and currents are of economic importance. In particular,345

there is an increasing trend toward the use of green energy [53], to de-346

crease greenhouse gas emissions (particularly carbon dioxide) into the at-347

mosphere. Worldwide, wind turbines generate several hundred gigawatts of348

electrical power with China’s contribution being the highest, about 30%; see349

https://www.worldenergy.org/data/resources/.350

Winds, however, are not a stable source of electrical power due to their351

high spatial and temporal variability [54]. Energy can be harvested from the352

ocean through, for example, ocean waves, ocean currents [3, 4, 5, 6], ocean353

temperature [55], and tides. Marine energy devices, such as ocean current354

turbines, tidal turbines, ocean thermal energy converters, wave energy con-355

verters, and in-stream turbines, hold a huge potential for the generation of356

green energy.357
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Accurate knowledge of the distribution of both winds and currents is vital358

for cost-effective harnessing of the power available through these sources. The359

power per unit area generated from flowing fluid is [26, 56, 57, 58]:360

P =
1

2
ρ〈U3〉 (3)

where ρ is the density of the fluid, and 〈U3〉 is the third moment of the speed361

of the fluid under consideration.362

To compare the performances of the Weibull and GG distributions in363

estimating the power, the percentage error in the power per unit area was364

calculated. More precisely, we computed the difference between the estimated365

power and the observed power (using either the Weibull or the GG estimated366

distributions) relative to the observed power, ε = PWeibull or GG−Pobserved

Pobserved
. As is367

evident from Fig. 8, the GG distribution resulted in a more accurate estimate368

of the power per unit area to the actual value for both winds and currents.369

Fig. 8c,f, clearly shows that both the Weibull and GG distributions usually370

underestimate the power per unit area that can be generated by winds and371

currents. In addition, the distribution of the GG relative error is centered372

around the zero value, while the Weibull one is much wider, indicating smaller373

error when using the GG distribution. A comparison between Fig. 6 and374

Fig. 8a,b,d,e indicates, as expected, that the relative error is (relatively) large375

(indicated by the green-yellow colors in Fig. 8a,b,d,e) mostly over the regions376

that fall outside the CI (shown by the green color in Fig. 6), supporting the377

moment-based test we proposed above. We note, however, that in any case,378

the relative error is not large and typically is much smaller than 4%.379

The use of the Weibull distribution as an approximation for the observed380

wind and current speed distributions may result in an inaccurate estima-381

tion of the power available for extraction for a particular location. The382

GG distribution instead provides a better estimate regarding the potential383

wind/current power. Other distributions that were not examined here may384

provide an even better estimation of the potential power.385

6. Summary and conclusions386

It is commonly assumed that surface winds and surface sea currents can387

be accurately modeled by Weibull probability density function over any given388

geographic location. In this study, we propose a method to test the valid-389

ity of this assumption; in addition, an alternative distribution (namely the390
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Generalized Gamma) was tested. Specifically, we analyzed global 10 m sur-391

face wind speed ERA-Interim reanalysis data (6 hour interval from 1979 to392

2016) and surface, altimetry based daily currents speed dataset (from 1993393

to 2016).394

At each grid point the tests were implemented as follows: (i) the pa-395

rameters of the assumed distributions (Weibull and GG) were fitted to the396

available time series by the MLE method; (ii) the estimated parameters were397

used to generate a large number of surrogate (synthetic) data; (iii) the mo-398

ments of the surrogate data were benchmarked against the moment of the399

original data; if the estimated moment of the original data falls within the400

confidence interval of the corresponding moment of the surrogate data then,401

for that moment, the distribution was regarded as truly Weibull (or GG de-402

pending on the initial hypothesis) such that the series passed the test (for403

that moment).404

Overall, results showed that the GG distribution was likely to provide405

a better fit than the Weibull distribution for both winds and currents on a406

larger portion of geographical locations. In particular, with reference to the407

third moment of the data (which is used to calculate the potential power of408

winds and currents) results indicate that the portion of wind speed series409

passing the tests were respectively 78% when using a Weibull initial hypoth-410

esis and 89% when using GG hypothesis; on the other hand, the portion of411

sea current grid points passing the test were respectively 80% when using412

the Weibull hypothesis and 95% when using the GG hypothesis. It is worth413

reminding that the Weibull is a particular case of the GG distribution, when414

ε is about 1, therefore under appropriate conditions, both Weibull and GG415

distribution can fit accurately the same data.416

In addition to the statistical test discussed above, which is valid for any417

given PDF, we applied another test that is specific to the Weibull and the GG418

distributions; see Appendix B and Appendix C. This approach (as described419

in Appendix B) resulted in a smaller percentage of geographical locations that420

fell within the CI of the surrogate data. Using this approach, we showed in421

Appendix C that only a small fraction of the available series (∼10 %) was422

truly Weibull. Thus, for a large number of geographical locations, we cannot423

conclude that the Weibull or the GG were the best assumptions for wind424

and current speed; conversely, distributions other than Weibull and GG may425

provide a better fit to the particular data at hand.426

We also performed standard statistical tests including the χ2-test [59, 60]427

and the Kolmogorov-Smirnov test [61] as applied on a restricted dataset refer-428
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ring to Denmark—see, e.g., [13]. These approaches are completely different429

from the above mentioned tests. In particular, with reference to the χ2-test,430

one basically sums the differences between the observed and the expected431

frequencies over the observed ranges of measured speeds. Therefore, even a432

small difference on the density estimated at the tail of the distribution can433

result in a large overall difference between the empirical and the theoreti-434

cal distributions. According to the χ2-test, results indicate that only a very435

small fraction of the global area falls within the CI interval of the theoretical436

PDF, indicating that only in a small portion of surface winds and currents437

are accurately approximated by Weibull (or GG) distributions (where the438

GG performs better than the Weibull). Results suggest that the tails of the439

observed distributions had a large impact on the test statistics; in practice,440

both the Weibull and the GG distributions were less accurate hypothesis for441

the highest regimens of wind and current speed.442

In the Kolmogorov-Smirnov test, one basically computes the maximal443

difference between the observed and expected cumulative distributions where444

a larger difference indicates larger dissimilarity between the two distributions.445

Large differences are expected close to the center of the PDFs (where the446

PDFs are maximal), such that the Kolmogorov-Smirnov test is more sensitive447

to the central part of the distributions. The results of this test are presented448

in Fig. 10. In this case the percentage of the area falling within the 95% CI449

interval are much higher than what we obtained for the χ2-test. In particular,450

the GG assumption yielded an area that is twice as large as the area obtained451

when using the Weibull assumption. In addition, when comparing the test452

statistics of surface wind speed against surface current speed, the current453

speed were likely to behave much better, in such a way that the Weibull and454

the GG assumptions were more accurate for currents than winds.455

We translated these tests and assumptions into some of their practical456

consequences by calculating the potential power generated by surface winds457

and currents when assuming that the underlying distributions are either458

Weibull or GG. We estimated the error associated with calculations based on459

the third moment of the assumed distribution (either Weibull of GG) versus460

the expected power calculated from the original data. Results indicate that461

the magnitude of the errors associated with GG distributions are smaller462

than the errors associated with Weibull assumptions. Moreover, it is worth463

mentioning that in the context of this study, we focused on the analysis of464

low moments tested within the standard 95% CI interval. When consider-465

ing higher moments and different CI intervals, results can change drastically.466
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Tuning the sensitivity of the statistical tests should be tailored to the specific467

application at hand.468

In summary, we presented a general procedure to quantify the level of469

agreement between an assumed PDF and the actual PDF of the wind and470

current speed data. This procedure is based on comparison between the mo-471

ments of the original and those of random time series which has the distribu-472

tion of the assumed distribution. Other statistical tests were also presented473

and discussed. We found that the GG distribution more accurately fits the474

actual distribution of wind and current speed around the globe. We obtain475

better power estimation when using the GG distribution.476

In this paper we used wind and current reanalysis time series as an ap-477

proximation of in-situ measures. A potential limitation of this approach478

is inherent to the very nature of the data that we used for the statistical479

tests. However it is worth noticing that in-situ measurements are not evenly480

distributed around the globe, often, highly accurate observations are concen-481

trated in some countries, while in other regions, in-situ measurements are482

very sparse, inaccurate or missing all together. In addition, observed mea-483

sures over different location may not have the same temporal resolution, may484

not overlap over the the same time period, limiting or completely impairing485

the feasibility of a global analysis. Taken all this into consideration, reanal-486

ysis appeared to be an optimal choice for a global analysis. Yet, reanalysis487

data not always accurately estimate real winds. In addition, the surface cur-488

rent speeds we analyzed are based on remotely sensed daily altimetry data489

which are based on the assumption of geostrophy, which is not always accu-490

rate. Thus, we plan to analyze in-situ measurements of both surface winds491

and surface currents from different location around the globe and to com-492

pare these to the results reported here. Moreover, here we focused on surface493

winds and currents and in the future we plan to analyze the statistical prop-494

erties of winds and currents of other vertical levels, both in the ocean and in495

the atmosphere; see, e.g., [23]. This can be performed on reanalysis data as496

well as on measured data. The vertical component of the wind and current497

vectors is related to the horizontal components via the continuity equation498

and we are planning to study the relation between these two. It will be also499

interesting if and how the parameters of the distributions vary with time;500

this can be accomplished but studying the CMIP5 models in recent history501

and under future different climate change scenarios.502

In conclusion, one can ask: are surface wind and current speeds Weibull503

or GG distributed, if at all? The answer to this question is complex as it504
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depends on the method of analysis and on the moment (or set of moments)505

of interest (where different application may focus on different moments).506

When focusing on low moments (smaller or equal to 3), we concluded that507

the GG distribution was likely to be a more accurate approximation of the508

distribution of the original wind and current speed.509
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Appendix A. The parameter distribution of the Weibull and GG682

distributions683

Fig. A.11 shows the distribution of the Weibull PDF parameters λ, k,684

for the surface winds and current speed as discussed in the main text and685

shown in Fig. 3. Similarly, Fig. A.11 shows the distribution of the GG PDF686

parameters, λ, k, and ε. As discussed in the main text, the scale parameter λ687

reflects the mean speed; this is roughly consistent with the range and center688

of the distributions shown in Fig. A.11a,d, which are typically 10 m s−1 and689

10 cm s−1 for surface wind and surface current speeds, respectively. In all690

panels (except Fig. A.11d), the GG estimated parameters span a larger range691

than the Weibull ones. In addition, the k, and ε parameters span a smaller692

range for the surface currents. We note that very small and very large k693

and/or ε probably indicate that other distributions, rather than Weibull or694

GG, may better approximate the data distribution. When the GG parameter695

ε ≈ 1, the GG PDF reduces to the Weibull PDF, and it is evident from Fig.696

A.11c,f that only a small portion of the distribution of ε is approximately 1,697

such that for the majority of the global area, the distribution is not Weibull.698

We elaborate more on this point below (Fig. B.14).699

The zonal mean of the different parameters of the Weibull and GG dis-700

tributions of the surface winds and currents are presented in Fig. A.12. We701

discuss these results in Sec. 4 of the main text. Also here, the λ parameter702

reflects the mean wind/current speed and is large at latitudes of large speeds703

(e.g., for currents at the equator and around 54◦S for southern ocean winds).704

It is apparent that there is no clear relation between the λ of the winds and705

the λ of the currents, suggesting that the wind stress forces the ocean in706

a non-trivial way and that other sources of energy affect the ocean surface707

geostrophic currents.708

Appendix B. Weibull and GG distribution-specific surrogate data709

test710

In the main text (Sec. 3), we described a surrogate data test that can be711

applied to general distributions, for each moment and independently from712

other moments. Below, we suggest a test that is specific to the Weibull and713

the GG distributions; similar tests can be developed for other distributions714

too. We start by describing the method for the Weibull distribution with its715

parameters λ and k; a similar procedure, with the proper adjustments, is then716
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repeated for the GG distribution. Assuming that the time series at hand, x,717

is Weibull-distributed, we apply the following steps for every geographic grid718

point:719

(i) Estimate the Weibull distribution parameters, λ and k, of the original720

time series using the MLE method.721

(ii) Generate many surrogate Weibull-distributed time series, y, using the722

λ and k of step (i).723

(iii) Use the method of moments (MOM) to approximate the λ and k of the724

original data x and of the surrogate data y. In the case of a Weibull725

process, the mth moment is:726

〈xm〉 = µm = λmΓ
(

1 +
m

k

)
(B.1)

where 〈·〉 represents the expected value, Γ is the gamma function, and727

λ and k are the parameters to be estimated. Based on the data (or728

surrogate data), we find the ratio, ri,j as follows729

ri,j =
µ
j/i
i

µj
=

Γ
(
1 + i

k

)
Γ
(
1 + j

k

) (B.2)

where i and j are the indexes of two different moments µi, µj that are730

calculated from the data (or surrogate data). By taking the ratio, we731

eliminate λ such that only the k parameter has be found by solving the732

transcendental equation (B.2); the λ parameter is then found by Eq.733

(B.1) using the first moment, for example.734

(iv) Calculate the 95% CI (as the range of values between the 0.025 and735

0.975 quantiles) of the k parameter of the surrogate data estimated in736

step (iii).737

(v) Verify whether the MOM-based k parameters of the original data (from738

step (iii)) fall within the CI of the surrogate data (step (iv)); if positive,739

the null hypothesis is not rejected and the original data can be regarded740

as Weibull-distributed; otherwise, the Weibull hypothesis is rejected.741

We now repeat the method described above for the GG distribution. Ba-742

sically, the only difference is in step (iii) above, but, for the sake of complete-743

ness, we present the entire procedure from the beginning to end. Starting744
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from the assumption that the time series at hand, x, is GG-distributed, we745

proceed as follows:746

(i) Estimate the GG distribution parameters λ, k, ε of the original data747

using the MLE method.748

(ii) Generate a large number of GG-distributed surrogate series, y, using749

the parameters of step (i).750

(iii) Use the method of moments (MOM) to approximate the GG parame-751

ters (λ, k, ε) of the original data x and of the surrogate data y. The752

mth moment of the GG PDF is:753

〈xm〉 = µm =
λm

Γ(ε)
Γ
(
ε+

m

k

)
(B.3)

where 〈·〉 represents the expected value, Γ is the gamma function, and754

λ, k, and ε are the GG parameters to be estimated. Based on the data755

(or surrogate data), we find the ratio, ri,j as follows756

ri,j =
µ
j/i
i

µj
=

Γ(ε)1−j/i[Γ
(
ε+ i

k

)
]j/i

Γ
(
ε+ j

k

) . (B.4)

Then, we find the k and ε GG parameters by minimizing the following
cost function:

f(ri1,j1 , ri2,j2) =

[
ri1,j1 −

Γ(ε)1−j1/i1 [Γ
(
ε+ i1

k

)
]j1/i1

Γ
(
ε+ j1

k

) ]2
+[

ri2,j2 −
Γ(ε)1−j2/i2 [Γ

(
ε+ i2

k

)
]j2/i2

Γ
(
ε+ j2

k

) ]2
(B.5)

where (j1, i1) and (j2, i2) indicate two different sets of moments. The757

λ parameter is then found using Eq. (B.3), using the first moment, for758

example.759

(iv) Calculate the 95% CI (using the 0.025 and 0.975 quantiles) of the k and760

ε of the surrogate data that were estimated using the MOM (detailed761

in step (iii)).762
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(v) Verify whether the original datas MOM-estimated parameters fall within763

the CI of the surrogate data (step (iv)); if positive, the null hypoth-764

esis is not rejected, and the data can be regarded as GG-distributed,765

while otherwise, the null hypothesis is rejected, and the data cannot be766

regarded as being GG-distributed.767

We use the same datasets analyzed in the main text (Sec. 3), namely the768

ERA-Interim surface winds and geostrophic surface currents that are derived769

from altimetry measurements. The above tests were applied to every grid770

point separately. The results of the above Weibull MOM method are depicted771

in Fig. B.13a,b. The analysis is based on the first and second moments.772

The results indicate that the surface wind speed over the tropical ocean,773

Antarctica and Greenland are not Weibull-distributed as the k parameter of774

the assumed Weibull distribution falls outside the CI interval of the surrogate775

data. More generally, 60% of the global area of the k parameter of the Weibull776

distribution falls within the CI interval of the k parameter of the surrogate777

data. As for the surface currents, the k parameter of 78% of the analyzed area778

falls within the CI of the surrogate data. The results presented in B.13a,b779

are based on the first and second moments—other set of moments yielded780

different results, and the percentage of area that falls within the CI of the781

surrogate data decreases as the chosen moments increase; see Eq. (B.2).782

Fig. B.13c,d,e,f depicts the results of the GG parameters. The analysis783

is based on moments m = 1, 2, 3, 4. Surprisingly, the more general GG dis-784

tribution yielded a much larger area that falls outside the CI interval of the785

surrogate data; only for ∼28% of the analyzed areas did the k and ε GG786

parameters fall within the CI of the k and ε of the surrogate data. This is787

also valid for the k and ε GG parameters of the surface currents presented in788

Fig. B.13d,f where the area within the CI is ∼50%. These percentages, both789

for wind and currents, are much smaller than the percentages we obtained790

for the Weibull distribution (60% and 78% for the k parameters of the as-791

sumed Weibull distribution, Fig. B.13a,b) despite the fact that the GG is a792

more general distribution (compared to the Weibull distribution) that should793

result in a larger area that falls within the CI interval of the surrogate data.794

Most probably, these smaller percentages for the GG distribution are related795

to the fact that we used four moments (m = 1, 2, 3, 4) for the GG analysis796

and only two (m = 1, 2) for the Weibull distribution; generally speaking,797

higher moments yield a smaller area that falls within the CI of the surrogate798

data. This is consistent with Fig. 7.799
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In Fig. B.13c,d, we present the results of the k parameter of the GG800

distribution, while in Fig. B.13e,f, we present the results of the ε parameter801

of the GG distribution. As expected, the results of the two parameters are802

very similar, as the method solved the two parameters simultaneously. Thus,803

it is sufficient to concentrate on one of these parameters to make conclusions804

regarding the assumed probability.805

Appendix C. A method of verifying whether a distribution is in-806

deed Weibull807

The GG distribution is a generalization of the Weibull distribution, such808

that when the ε parameter of the GG distribution is equal to 1, ε = 1, the809

GG distribution reduces to the Weibull distribution; see Eqs. (1), (2). We810

use this fact to verify whether an assumed Weibull distribution is indeed811

Weibull. Assuming that the time series at hand, x, is Weibull-distributed,812

we apply the following steps:813

(i) Estimate the Weibull distribution parameters, λ and k, of the original814

data using the MLE method.815

(ii) Generate (many) Weibull artificial time series with the same λ and k816

and the same length as the original time series.817

(iii) Using the MLE, estimate the GG parameters, λ, k, and the ε of the818

time series from the previous step. The ε parameter should be scattered819

around 1, ε ≈ 1.820

(iv) Calculate the 95% CI interval of the ε parameter from step (iii).821

(v) Estimate the GG distribution parameters of the original data and check822

whether the ε parameter of the original data is indeed close to 1 and823

falls within the CI interval of (iv). If positive, the data can be regarded824

as Weibull-distributed, while if negative, they are not.825

The results of the method described above are presented in Fig. B.14.826

With regards to the surface wind speed, it is apparent that only 8% of the827

global area falls within the CI interval of ε ≈ 1, indicating that only 8% of828

the globe can be considered as Weibull-distributed. The percentage is even829

lower for the ocean surface currents where only 7% of the analyzed area falls830

within the CI of ε ≈ 1.831
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We note that in the above test, we assumed that the distribution is either832

Weibull or GG. It is possible that none of these distributions satisfactorily833

account for the distribution of the original data. This may be the reason for834

the low percentage we obtained in this test.835

27



0 1 2 3 4 5
x

0

0.2

0.4

0.6

0.8

1

1.2
f(

x)
Weibull

(a) k = 1
k = 1.5
k = 2
k = 2.5

0 1 2 3 4 5
x

10 -3

10 -2

10 -1

10 0

10 1

f(
x)

Weibull

(b) k = 1
k = 1.5
k = 2
k = 2.5

0 2 4 6 8 10 12
x

0

0.2

0.4

0.6

0.8

1

f(
x)

Gen. gamma

(c) k = 1,  = 1
k = 1,  = 2
k = 1,  = 3

0 1 2 3 4 5 6
x

0

0.2

0.4

0.6

0.8

1

f(
x)

Gen. gamma

(d) k = 2,  = 1
k = 2,  = 2
k = 2,  = 3

78E, 10.5S
(e)

0 5 10 15
Wind speed (m/s)

0

0.1

0.2

0.3

f(
x)

Data
Weibull
Gen. Gamma

42E, 8.25S
(f)

0 5 10 15
Wind speed (m/s)

0

0.1

0.2

0.3

f(
x)

Data
Weibull
Gen. Gamma

Figure 1: A few illustrative examples of the probability density function (PDF) of the
Weibull distribution when the scale and shape parameters are λ = 1 and k = 1, 1.5, 2, 2.5,
in (a) regular and (b) semi-log plots. (c) Examples of the PDFs of the GG distribution
for λ = 1, k = 1 and ε = 1, 2, 3. (d) Same as (c) for λ = 1, k = 2 and ε = 1, 2, 3.
Two particular instances of sample distributions of surface wind speeds (sampled from
1979 - 2016 at a frequency of 6 hours), as well as the corresponding Weibull and GG
approximations at (e) 78◦E, 10.5◦S [the Weibull parameters are λ = 7.5m s−1, k = 2.7,
and the GG parameters are λ = 10.4m s−1, k = 6.4, ε = 0.3] and (f) 42◦W, 8.25◦S [the
Weibull parameters are λ = 7.3 m s−1, k = 3 and the GG parameters are λ = 10 m s−1,
k = 12.2, ε = 0.2].
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Figure 2: A flow chart showing the various steps of the analysis to test whether a
specific assumed distribution f(x) (either Weibull or GG) fits a given time series [x] (in
our case surface wind and current speed time series). The chart can be used to (i) test
either a Weibull or a GG hypothesis. In step (ii) we apply a method of estimating the
parameters of the hypothesis f(x) by maximizing a likelihood function (MLE method).
Therefore, using the assumed approximate distribution, (iii) we generate a large number
(i ∼ 300) of surrogate (synthetic) time series {Si} where each series has the same length
of the measured data. Thereafter (iv) we calculate m = 1, . . . ,mmax moments µm of each
individual surrogate Si. On the basis of this set of surrogate moments, we estimate in
(v) the 0.95 confidence interval (CI) of each moment. In step (vii) we check whether the
value of the moment of original data x (calculated in vi) falls within the corresponding
confidence interval, CI; the initial null hypothesis H0 is not rejected if the moment of the
original data falls within the CI of the surrogate data while otherwise the null hypothesis
is rejected. The method was applied to all series at hand (surface wind and current speed)
to test both Weibull and GG distributions but can be generalized to any given distribution
that support the MLE method used as the initial estimator of distribution parameters.
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Figure 3: Maps of the Weibull distribution parameters, λ (left panels, in m s−1) and
k (right panels) of surface wind speed (upper panels) and surface current speed (lower
panels). The parameters were estimated based on the MLE method. The brown color in
the lower panels indicates the land regions, while the white color indicates no available
data.
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Figure 4: Maps showing the surface wind speed GG parameters (estimated using the
MLE) (a) λ (in m s−1), (b) k, and (c) ε. (d) The ε GG parameter versus the k GG
parameter showing that the two are not fully independent—the red line indicates the
relation ε = 4k−4/3.
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Figure 5: Same as Fig. 4 for the surface ocean current speed. The red line in (d) indicates
the relation ε = 3k−4/3.
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Figure 6: Maps showing the areas where the surface wind speed [(a),(b)] and the surface
current speed [(c),(d)] are Weibull-distributed [(a),(c)] or GG-distributed [(b),(d)]: positive
(within the 95% CI, yellow), negative (outside the 95% CI, green). The brown color
indicates land areas, while the white color indicates no available data. Results are based
on the surrogate data method (using the third moment) described in Sec. 3 and in Fig.
2. The percentage of the analyzed area that falls within the 95% CI is (a) 78%, (b) 89%,
(c) 80%, and (d) 95%.
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Figure 7: The proportion of the analyzed area that falls within the CI of the assumed
distribution for the surface wind and current speed as a function of moment.
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Figure 8: Maps showing the absolute value of the percentage error in the potential wind
power per unit area as estimated using the Weibull [(a),(d)] and GG [(b),(d)] distributions
for surface winds [(a),(b)] and surface currents [(d),(e)]. Frequency histograms showing
the relative errors of the assumed Weibull (WB) and GG distributions for the surface
winds (c) and surface currents (f). The red histograms indicate the errors obtained by
estimation carried out using the Weibull hypothesis, while the green histograms indicate
the error when assuming the GG hypothesis; the overlapping histogram region is indicated
by the dark green color.
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Figure 9: Results of the χ2-test. Maps showing the areas where the surface wind speed
[(a),(b)] and the surface current speed [(c),(d)] are Weibull-distributed [(a),(c)] or GG-
distributed [(b),(d)]: positive (within the 95% CI, yellow), negative (outside the 95% CI,
green). The brown areas refer to land areas, while the white color indicates no available
data. The percentages of geographic grid points falling within the 95% CI are (a) 0.4%,
(b) 1.6%, (c) 2.9%, and (d) 8.3%.
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Figure 10: Results of the Kolmogorov-Smirnov test. Maps showing the areas where the
surface wind speed [(a),(b)] and the surface current speed [(c),(d)] are Weibull-distributed
[(a),(c)] or GG-distributed [(b),(d)]: positive (within the 95% CI, yellow), negative (outside
the 95% CI, green). The brown color refers to land areas, while the white color indicates
no available data. The percentages of geographic grid points falling within the 95% CI are
(a) 4.7%, (b) 11.5%, (c) 29.8%, and (d) 60.1%.
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Figure A.11: The distribution of the parameters of the Weibull (blue) and GG (red)
distributions estimated using the MLE method, for surface wind speed (upper panels) and
surface current speed (lower panels). The λ parameter is shown in panels (a) and (d), the
k parameter is shown in panels (b) and (e), and the ε parameter is shown in panels (c)
and (f).
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Figure A.12: Zonal mean of the MLE-fitted Weibull distribution parameters (blue) and GG
distribution parameters (red) for surface wind speed (upper panels) and surface current
speed (lower panels). (a),(d) λ parameter, (b),(e) k parameter, and (c),(f) ε parameter.
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Figure B.13: Maps of the areas where the shape parameter, k, of the data falls within
the CI of the k of the surrogate data. The maps are based on the method of moment
(Appendix B) assuming a Weibull distribution of (a) surface wind speed and (b) surface
ocean currents. (c),(d) same as (a),(b) for the k parameter of the GG distribution and
(e),(f) are the same as (c),(d) for the ε GG parameter. The brown color in panels b,d,f
indicates the land areas, while the white color indicates no available data. The percentage
of the analyzed area that falls within the CI is: (a) 60%, (b) 78%, (c) 29%, (d) 50%, (e)
27%, (f) 49%.
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Figure B.14: Maps of the areas where the estimated ε of the GG distribution is within
(or outside) the CI of the corresponding ε of the surrogate data with ε ≈ 1. Maps for the
(a) surface wind speed and (b) surface current speed. Areas with ε ≈ 1 indicate that the
underlying distribution is likely to be Weibull. The brown color in panel b indicates land
areas, while the white color indicates no available data. The results are based on whether
ε lies within the 95% CI of 1 as determined from 300 surrogate time series. The length of
the surrogate is the same as the original data. The ratio (in %) of data falling within the
CI is (a) 8%, (b) 7%.
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