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Chapter 1

Small is NOT necessarily negligible

The standard practice in natural sciences to understand any physical, chemical or
biological system is to somehow express it in the form of an equation. The equation
to find the displacement s of a particle traveling along a straight line at a speed u and
accelerating with time at a rate a is given by:

s = ut+
1

2
at2 (1.1)

where t is the time lapsed since the particle started moving. On the other hand, the
decay of a radio active element like uranium can be quantified as:

N(t) = N0e
−kt (1.2)

where N0 is the initial number of atoms of uranium, k is the decay constant and N(t) is
the number of uranium atoms present after time t.

Such equations are a scientist’s attempt to express any natural phenomena in terms
of simple mathematical expressions often aimed at predicting the future state of any
system. The general form of an equation is given by f(x) = 0. The left hand side (LHS)
of the equation can consist of any number of terms. In context of determining the future
state of a natural system, the terms on the LHS usually represent different mechanisms
governing the system.

1.1 Finding approximate solutions to equations (or

problems) that have no simple solutions

Ever so often, the scientific problems that we express as equations are not solvable. In
that case one has to resort to some ‘trickery’ (a protocol) which makes the problem
solvable. One such protocol which will be used extensively throughout this course can be
summarised as follows:

1. Identify a (seemingly) small term in the problem/equation.

2. Solve the problem by setting the “small” term equal to 0.

3. Verify that the small term is indeed small by substituting the approximate solution
we’ve found in the original problem and checking that the neglected term is indeed
small.
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The third step in the protocol ensures an apparent consistency. However, the reader
should note that an apparently consistent solution may not be the real solution to the
problem. We attempt to understand this protocol through a set of examples. We start the
discussion by examining problems with known solutions in order to review the usefulness
of the protocol.

1.1.1 Example 1: the protocol works

Equations (1.3),(1.4) make up a set of linear algebraic equations with two unknowns.
One learns to solve such equations in middle school but for the sake of illustrating our
protocol we assume that we do not know how to solve this set of equations exactly.

x+ 10y = 21 (1.3)

5x+ y = 7 (1.4)

The first step of the protocol is to identify a small term, we assume that term x
in (1.3) is small based on the values of the coefficients in this equation (1 compared to
10 and 21). As per the second item in our protocol, we set x = 0 in which case (1.3)
simplifies to 10y ≈ 21 which yields the approximate solution y = 2.1. Substituting this
value of y in (1.4) then yields the approximate value of x = 0.98. The third step is to
check the apparent consistency of the solution. Substituting x = 0.98 and y = 2.1 on the
LHS of (1.3) and (1.4) yields 21.98 and 7 respectively. Thus, we see that the condition
of apparent consistency is also satisfied since the maximal relative error on the RHS is
about 5% (i.e., 0.98/21).

If you solve this set of algebraic equations without following our protocol the exact
solution is x = 1 and y = 2. In this particular case, our protocol has yielded approximate
solutions that are close to the exact solutions 2.1 approximates 2 while 0.98 approximates
1 which falls within the anticipated 5% accuracy. However, this is not always the case as
we’ll see in the next example.

1.1.2 Example 2: the protocol does not work

Equations (1.5),(1.6) make up yet another set of linear equations with two variables.

0.01x+ y = 0.1 (1.5)

x+ 101y = 11 (1.6)

Following the protocol, as was done in the previous section, yields that the solution
to the problem is x = 0.9 and y = 0.1. Despite satisfying the condition of apparent
consistency, this approximate solution is very far away from the exact solution of x = −90
and y = 1. We now try to understand why does the protocol fail in this particular case.
Set of equations (1.7), (1.8) is a generalization of the above set.

εx+ y = 0.1 (1.7)

x+ 101y = 11 (1.8)

Here ε is a real number. Solving (1.7) for x, yields x = − 0.9

101ε− 1
. When ε→ 1/101,

the value of x → −∞. The coefficient in (1.5) is very close to 1/101 and that’s why we
get spurious solutions while employing the protocol.
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1.1.3 Example 3: Wilkinson’s polynomial

The Wilkinson’s polynomial is a polynomial of degree 20, the roots of which are natural
numbers 1, 2, 3, . . . , 20.

(x− 1)(x− 2)(x− 3) . . . (x− 19)(x− 20) = 0 (1.9)

Let us add a tiny perturbation, ε ∼ 10−10, to the Wilkinson’s polynomial; the
perturbed polynomial is given by:

(x− 1)(x− 2)(x− 3) . . . (x− 19)(x− 20) + εx19 = 0 (1.10)
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Figure 1.1: Roots of the perturbed Wilkinson’s polynomial on the complex plane for
ε = 4× 10−10. Roots smaller than 9 are not shown in the figure. [Adapted from Bender
and Orszag (1978)]

As is illustrated in Figure 1.1, even such a ‘small’ perturbation (ε = 4×10−10) renders a
few roots of Wilkinson’s polynomial (6 in this case), complex. Clearly, we need to develop
a precise definition of what can be regarded as small.

1.2 Generalization: ill-posed equations/problems

In this section we develop a general framework to answer the question when a quantity
appearing in a problem can be considered ‘small’. To do the same, we assume that any
problem we solve (differential equation, algebraic equation etc) is of the form f(x) = 0.
The perturbed form of the same can be written as:

f [x(ε), ε] = 0. (1.11)

We further assume
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(a) for ε = 0: f [x(0), 0] = 0

(b) for 0 < ε� 1: f [x(0), ε]− f [x(0), 0] ≈ ε
∂f

∂ε

∣∣∣
x(0)

:= r is known (this is just the term

added to the equation itself).

If ε is indeed small, we can approximate f [x(ε), ε] as:

f [x(ε), ε] ≈ f [x(0), 0] + ε
∂f

∂x

∂x

∂ε

∣∣∣
x(0)

+ ε
∂f

∂ε

∣∣∣
x(0)

(1.12)

0 = 0 + εfx.xε + εfε (1.13)

=⇒ εxε = −εfε
fx

(1.14)

Here fa ≡
∂f

∂a
. The quantity εxε is the measure of ‘deviation’ or change in the solution

because of the perturbation and εfε is the measure of deviation in the equation itself. Since
we know how much does the perturbation change the equation [through the condition of
apparent consistency given by (b)] we can estimate the deviation in the solution as:

εxε
x

= − 1

fx
· r
x

(1.15)

The LHS is the relative error in the solution while the quantity
r

x
on the RHS is the

relative error in the equation caused by the addition of the ε term i.e., the perturbation

term. For fx � 1 the former (i.e., the error in the solution) is large even when
r

x
(the

error in the equation) is small. Thus, for the deviation or the error in the solution to be
small for small ε, fx has to be O(1).

1.3 Homework assignment 1

Water flowing from a small circular hole in a container has speed v which is approximately
given by v = 0.6

√
2gh, where g is the gravitational acceleration and h is the height of

the water above the hole. Let A(h) be the area of the cross section at height h.

(a) Derive:
dh

dt
= −0.6

A(0)

A(h)
(1.16)

(b) Suppose that the actual shape of the container is approximated by A(h) = hc, c
is a constant. Solve the initial value problem. Discuss the apparent consistency of
the approximation.
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Chapter 2

Transformation to dimensionless
variables

In the last chapter, we pointed out that natural scientists often cast the problems
that they encounter into mathematical equations. However, more often than not, such
equations (algebraic or differential problems) do not have exact solutions and certain
‘trickery’ needs to be employed to obtain as reasonable a solution as possible. One such
protocol we discussed is to assume that one (or more) of the terms in the equation e.g., a
term (or several terms) that is (are) preceded by a ‘small’ coefficient — ε, can be neglected
and solving the approximate equation where ε = 0. This protocol is neither unique nor
perfect and we will continue to explore its different aspect throughout this course.

2.1 A tale of units

An equation usually comprises of a collection of variables upon which different operators
e.g., addition, subtraction, differentiation act. For a natural scientists different operators
need to conserve the ’units’ in an equation. For instance, an equation such as

du

dt
− g + a = 0; (2.1)

makes sense to a physicist only if u has the units of velocity and both g and a have
the units of acceleration. This way of thinking is quite convenient because by looking
at the magnitude of different physical quantities, one can determine how much control
that quantity (and in turn the mechanism represented by it) exercises on the system.
However, our protocol relies on being able to identify small coefficients which may not be
a trivial task in a ‘dimensional’ equation for a variety of reasons e.g., the coefficient itself
may be composed of different physical quantities. To circumvent such issues, equations
can be transformed from the dimensional framework to a non-dimensional one by scaling.

2.2 Scaling

To transform an equation from a dimensional framework to a non-dimensional one, we
need to divide each of the variables (both dependent and independent) in the equation
by a combination of parameters that has the same unit. Non-dimensionalizing equations
not only makes it easier to compare different quantities in the equation but often also
reduces the number of parameters in the problem.
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2.2.1 Example 1: Frictionless motion of a fluid parcel on the
f-plane

The equation of friction-less motion of a fluid parcel in ‘natural coordinates’ (Martin,
2013, refer to page 93-97) is given by:

v2

R
− fv = fvg (2.2)

where v = |~v| > 0 is the magnitude of velocity, f is the constant Coriolis frequency and
vg is the geostrophic velocity associated with the constant pressure-gradient force i.e., vg
satisfies the equation:

vg = − 1

ρf

∂p

∂n
. (2.3)

Here, p is the pressure and n is the perpendicular direction to the direction of motion
i.e., directed to the left of ~v (so ~v, n̂ and k̂ form a right-handed triplet where n̂ is the unit
vector in the normal direction, n, and k̂ is the unit vector in the upward direction relative
to the plane spanned by n and ~v). R is the radius of curvature of parcel trajectory, R > 0
if n̂ is directed toward the center of the curvature (counterclockwise flow) and R < 0 if n̂
is directed away from the center (clockwise flow). Table 2.1 summarizes the dimensions
of the variable, v, and the three parameters in the equation (2.2).

Variable Dimension Parameters Dimensions
v LT−1 f T−1

vg LT−1

R L

Table 2.1: Dimensions of variables and parameters in (2.2)

Equations (2.2) can be non-dimensionalized by scaling v on either vg or Rf since both

have dimensions of velocity. Let R0 =
v

Rf
, i.e., v = R0(Rf). Substituting this in (2.2)

yields:

R2
0(Rf)2

R
+ fR0(Rf) = fvg (2.4)

=⇒ R2
0︸︷︷︸

dimensionless

+ R0︸︷︷︸
dimensionless

=
vg
Rf︸︷︷︸

dimensionless

(2.5)

Substituting
vg
Rf

= R0g in (2.5) yields:

R2
0 +R0 = R0g (2.6)

which is an equation with a single non-dimensional parameter – R0g. Figure 2.1 illustrates
the solutions of (2.6) for several values of R0g. The different regimes on the solution plane,
where the abscissa is R2

0 + R0, has different dynamical meteorology regimes e.g., High
vs. Low, Cyclonic vs Anti-cyclonic flows and Regular vs. Anomalous flows (see Fig. 2
in Cohen et al., 2015). Note although R, f and vg can all assume positive and negative
values, the solution of equation (2.6) covers all sign- combinations.
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Figure 2.1: Solutions of (2.6) for different R0g regimes. The two circles denote the
solutions R0 = −1 and R0 = 0 for R0g = 0. The red line, R0 = R0g, is tangential to the
curve R2

0 +R0 at (0, 0).

An alternate way of non-dimensionalizing Equation (2.2) is to use vg to scale v instead
of Rf . This choice of scaling yields:

v̂2(vg)
2

R
+ fv̂(vg) = fvg (2.7)

=⇒ vg
fR

v̂2 + v̂ = 1 (2.8)

The substitution vg
fR

= R0g then yields:

R0gv̂
2 + v̂ = 1 (2.9)

For R0g � 1 i.e., for Rf � vg, (2.9) yields the geostrophic solution. It is rather
non-trivial to obtain this solution from (2.6) because the parameter R is used in the
scaling itself. It is advised not to use in the scaling a parameter that one wishes
to vary in the interpretation. The choice of scaling is determined by the form of the
non-dimensional equation and by the analysis one wishes to perform on it. For example,
setting R0g = 0 in (2.9) yields the geostrophic solution while the same substitution yields
the Inertial flow in (2.8)

As is evident from (2.5) and (2.8), there are two scales for v. Likewise, in any problem
there are multiple combination of parameters over which the dimensional variables can
be scaled, however, not every scaling yields solvable non-dimensional equations. We show
this in our next example.

2.2.2 Example 2: The projectile problem

We explore the dynamics of a small projectile launched upwards from the ground (i.e.,
z = 0 with vertical velocity v. Considering the law of gravitational attraction between
two bodies (that decays with the square of the distance between them) the equation of
motion for such a projectile is given by:

d2z

dt2
= −g a2

(a+ z)2
(2.10)
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where z is the displacement of the projectile from the surface (z = 0), g is the gravitational
acceleration at the surface and a is the radius of Earth. The initial conditions associated
with (2.10) are:

z(0) = 0 and
dz

dt

∣∣∣
z=0

= v. (2.11)

The classical approach to solving this problem is to assume that z � a i.e., the
gravitational acceleration does not vary with the height of the projectile from the surface
(i.e., a+ z in the denominator of the RHS is replaced by the constant a) and solve for z
as a function of t which yields:

z = vt− 1

2
gt2 (2.12)

The maximum height reached by the projectile (found by setting dv
dz

= 0) is zmax =
v2

2g
so to guarantee that z � a uniformly at all times, one has to require only that zmax � a
i.e., v2 � 2ag. Having analyzed the 0th order dynamics We turn now to higher order terms
in the dynamics by analyzing first the ramifications of a non-dimensional formulation of
this problem.

There are two variables in this problem: z (the dependent variable) and t (the
independent variable). Equation (2.10) and the associated initial conditions, have three
parameters: a, g and v. The dimensions of the variables z and t are L and T, respectively
while the dimensions of the parameters a, g and v are L, LT−2 and LT−1 respectively.

The scaling starts by selecting a combination of parameters that has the same
dimension as one of the variables (dependent as well as independent) and doing so
for all the variables in the problem (equations and associated initial and/or boundary
conditions). It should be emphasized that the scaling is not unique and in most cases
there are several ways for scaling the variables that appear in a particular problem. In
the projectile problem (where z and t are the only variables) one such possible choice of

scaling is a for z and
a

v
for t i.e., letting: ẑ =

z

a
and t̂ =

t

a/v
in (2.10) which yields:

1

(a/v)2
d2

dt̂2
(aẑ) = −g a

(a+ aẑ)2

v2

a

d2ẑ

dt̂2
= − g

(1 + ẑ)2

d2ẑ

dt̂2
= −ag

v2
1

(1 + ẑ)2

Substituting
v2

ag
= ε yields:

ε
d2ẑ

dt̂2
= − 1

(1 + ẑ)2
(2.13)

The initial conditions can be rewritten as ẑ(0) = 0 and
dẑ

dt̂

∣∣∣
ẑ=0

= 1. Clearly, for

ε = 0, the equation is not solvable as the second order differenial operator disappears
from the governing equation. We need to find the appropriate scaling which yields
a solvable equation in the limit of interest. Table 2.2 provides a summary of all the
non-dimensionalized versions of (2.10) and the initial conditions (2.11). Clearly, of the 6
possible choices of scaling, the non-dimensional equation is solvable for ε = 0 only when
time is scaled on v/g and length is scaled over v2/g.
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Time scale a/v
√
a/g v/g

Length scale a a a

ODE ε
d2ẑ

dt̂2
= − 1

(1 + ẑ)2
d2ẑ

dt̂2
= − 1

(1 + ẑ)2
d2ẑ

dt̂2
= − ε

(1 + ẑ)2

ICs ẑ(0) = 0 &
dẑ

dt̂

∣∣∣
ẑ=0

= 1 ẑ(0) = 0 &
dẑ

dt̂

∣∣∣
ẑ=0

= ε1/2 ẑ(0) = 0 &
dẑ

dt̂

∣∣∣
ẑ=0

= ε

Time scale a/v
√
a/g v/g

Length scale v2/g v2/g v2/g

ODE ε2
d2ẑ

dt̂2
= − 1

(1 + εẑ)2
ε
d2ẑ

dt̂2
= − 1

(1 + εẑ)2
d2ẑ

dt̂2
= − 1

(1 + εẑ)2

ICs ẑ(0) = 0 &
dẑ

dt̂

∣∣∣
ẑ=0

=
1

ε
ẑ(0) = 0 &

dẑ

dt̂

∣∣∣
ẑ=0

=
1

ε1/2
ẑ(0) = 0 &

dẑ

dt̂

∣∣∣
ẑ=0

= 1

Table 2.2: Summary of all non-dimensionalized versions of (2.10); ε = v2/ag.

2.3 Conclusion: Why do we scale?

1. The non-dimensionalization of a dimensional, i.e., physical problem, reduces the
number of parameters in the problem. It’s important to note that some of the
parameters can appear in the initial or boundary condition(s) and not in the
(differential) equation itself.

2. A desired outcome of the scaling is that the relative size of a term in the
problem (i.e., the controlling mechanism of a system) is accurately estimated by its
coefficient.

3. Instructive scaling should yield an acceptable known solution to the problem when
one of the non-dimensional parameters is set equal to 0. This usually represents
one of the asymptotic limits associated with the problem under study.

2.4 Homework assignment 2

Verify that all the ODEs listed in Table 2.2 are correct, by non-dimensionalizing the
differential problem described by equation (2.10) and the associated initial conditions
(2.11) using the different scales given in the table.
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Chapter 3

Regular perturbation methods

Natural scientists often express problems in dynamics (particle motion, flow of geophysical
fluids, chemical kinetics) as differential equations. However, only a handful of these
equations can be solved (integrated) to obtain exact analytical solutions. To be precise
the number of solvable equations can be classified into two categories:

a) linear1, ordinary differential equations (ODEs) with constant coefficient with simple
initial/boundary conditions and

b) certain types of linear, homogeneous, partial differential equations (some extensions
to non-homogeneous equations also exist).

Over time, mathematicians have developed several methods which can be employed
to obtain solutions to these ‘unsolvable’ differential equations. One category of such
methods are the perturbation methods which will be discussed at length through this
course. At its crux, any perturbation method/technique involves three steps, i) finding
the exact solution to a simpler version of the problem, ii) assuming that the solution
to the original problem is a small ‘perturbation’ added to the simple solution and iii)
estimating the perturbation terms.

3.1 Regular perturbation

We illustrate the applicability of perturbation methods by solving the following algebraic
equation using the regular perturbation method:

x3 − (4 + ε)x+ 2ε = 0 (3.1)

where ε = 0.001. For ε = 0, the solutions to (3.1) are x = {−2, 0, 2}. We assume that
for ε 6= 0, the solution to (3.1) is of the form x = xi + δ where xi is the solution to the
simpler equation i.e., the equation with ε = 0. Since xi + δ is a solution to (3.1):

(xi + δ)3 − (4 + ε)(xi + δ) + 2ε = 0

x3i + 3x2i δ + 3xiδ
2 + δ3 − (4xi + εxi + 4δ + εδ) + 2ε = 0 (3.2)

As per our assumptions, δ ∼ ε� 1 and hence the higher order terms in (3.2) can be
safely neglected to yield:

x3i + 3x2i δ − 4xi − εxi − 4δ + 2ε = 0. (3.3)

1A differential equation is linear when the sum of two of its solutions is also a solution and a constant
times a solution is also a solution.
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Substituting xi = −2 in (3.3) yields δ = − ε
2

, thus one of the (approximated) roots to

(3.1) is x = −2 +
0.001

2
= 1.9995. The other roots can be calculated similarly.

3.2 Homework assignment 3

1. Calculate the roots of (3.1) by neglecting O(3) or higher terms in (3.2). How many
values of δ do you obtain? Are all the values acceptable perturbations to the simple
solution? (Hint: Remember δ ∼ ε)

2. Substitute x =
∞∑
j=0

xjε
j, in (3.1) and find the approximate roots of the equation.

3.3 Power series expansion

This ad-hoc method that we employed earlier to solve (3.1) is a special case of a more
general procedure described as follows:

1. Assume that the roots (solution) of the algebraic (differential) equation are of the

form x =
∞∑
j=0

xjε
j (often referred to as the power series) and substitute in into the

equation.

2. Collect the terms with like power of ε.

3. For each power of ε, set the coefficient (constituting different combinations of xjs)
to 0 and find the relation between xjs.

3.3.1 Example 1: Solving algebraic equation using power series

We try to solve an algebraic equation of the form:

x2 + εx− 1 = 0 (3.4)

using the method of power series expansion.

Step 1: We assume that the solution to (3.4) is of the form x =
∞∑
i=0

xiε
i and substitute it

in the equation to yield: (
∞∑
i=0

xiε
i

)2

+ ε

(
∞∑
i=0

xiε
i

)
− 1 = 0

(x0 + εx1 + ε2x2 + . . . )2 + ε(x0 + εx1 + ε2x2 + . . . )− 1 = 0

(x20 + ε2x21 + ε4x22 + 2εx0x1 + 2ε3x1x2 + 2ε2x0x2 + . . . )

+ε(x0 + εx1 + ε2x2 + . . . )− 1 = 0 (3.5)

Step 2: Collecting like powers of ε yields:

(x20 − 1) + ε(x0 + 2x0x1) + ε2(x21 + x1 + 2x0x2) · · · = 0 (3.6)
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Step 3: Setting the coefficients of each power of ε to 0 yields:

O(ε0) : x20 − 1 = 0 =⇒ x0 = ±1

O(ε1) : x0 + 2x0x1 = 0 =⇒ x1 = −1

2

O(ε2) : x21 + x1 + 2x0x2 = 0 =⇒ x2 = ±1

8

The (approximate) roots of (3.4) obtained using the power series method are given by:

x =


1− ε

2
+
ε2

8
+ . . .

−1− ε

2
− ε2

8
+ . . .

(3.7)

The exact roots of (3.4) are xexact =
ε±
√
ε2 + 4

2
. To see how the approximate roots are

related to real roots, we rewrite xexact as:

xexact = − ε
2
±
(

1 +
ε2

4

)1/2

≈ − ε
2
±
(

1 +
1

2

ε2

4
+ . . .

)
= − ε

2
± 1± ε2

8
+O(ε3) . . . (3.8)

Here we employed the Taylor expansion:
√

(1 + a) = 1 +
a

2
− a2

8
+
a3

16
. . . ) which is

valid for a � 1. Equation (3.8) shows that the power series solution given by (3.7) is
precisely equal to Taylor expansion of the exact solution.

3.3.2 Example 2: Solving differential equation using power
series

We now try to solve the following differential equation using the power series method.

d2y

dt2
+ εy = 0; y(0) = 1, y′(0) = 0 (3.9)

The exact solution to (3.9) is y = cos(
√
εt), we now apply the power series method to

obtain a solution and see how it relates to the exact solution.

Step 1: Assuming y(t) =
∞∑
i=0

yi(t)ε
i is a solution to (3.9), the zeroth, first and second

derivatives of y(t) are given by:

y(t) = y0(t) + εy1(t) + ε2y2(t) . . .

y′(t) = y′0(t) + εy′1(t) + ε2y′2(t) . . .

y′′(t) = y′′0(t) + εy′′1(t) + ε2y′′2(t) . . .

Substituting the aforementioned expansions in (3.9) yields:

y′′0 + εy′′1 + ε2y′′2 · · ·+ ε(y0 + εy1 + ε2y2 . . . ) = 0 (3.10)
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Step 2: Collecting like powers of ε:

y′′0 + ε(y′′1 + y0) + ε2(y′′2 + y1) + ε3(y′′3 + y2) + · · · = 0 (3.11)

Step 3: Setting the coefficients of each power of ε to 0 and satisfying the boundary conditions
for every order of ε :

O(ε0) : y′′(t) = 0 =⇒ y0(t) = αt+ β

The boundary conditions dictate:

y0(0) = α(0) + β = 1 =⇒ β = 1

y′0(0) = α = 0 =⇒ α = 0

Therefore y0(t) = 1. Similarly,

O(ε1) : εy′′1 + y0 = 0

=⇒ εy′′1 + 1 = 0

=⇒ y1(t) = −t
2

2
+ αt+ β

Applying the boundary conditions, y1(0) = 0 and y′1(0) = 0, yields:

−(0)2

2
+ α(0) + β = 0 =⇒ β = 0

0 + α = 0 =⇒ α = 0

Thus, y1(t) = −t
2

2
. We repeat the same exercise again for O(ε2) and obtain y2(t) =

t4

24
.

The solution to (3.9) obtained by the power series method is given by:

y(t) = 1− εt2

2
+
ε2t4

24
+ . . . (3.12)

which is the same as Taylor series expansion of the exact solution y(t) = cos(
√
εt) (Taylor

expansion of cos(x) about x = 0: 1− x2

2!
+
x4

4!
+ . . . ).

The power series solutions are not always Taylor series expansions of familiar functions
like sin, cos or exp because more often than not, differential equations do not have
‘nice-looking’ exact solutions. In the next example we solve a problem which does not
have an exact solution using the power series method and compare the approximate
solution to the numerical solution.

3.3.3 Example 3: Solving differential equation without an exact
solution

The problem at hand is given by:

d2y

dt2
+ εy2 = 0; y(0) = 1, y′(0) = 0 (3.13)
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Step 1: Assuming y(t) =
∞∑
i=0

yi(t)ε
i is a solution to (3.13), the zeroth, first and second

derivatives of y(t) are given by:

y(t) = y0(t) + εy1(t) + ε2y2(t) . . .

y′(t) = y′0(t) + εy′1(t) + ε2y′2(t) . . .

y′′(t) = y′′0(t) + εy′′1(t) + ε2y′′2(t) . . .

Substituting the aforementioned expansions in (3.13) yields:

y′′0 + εy′′1 + ε2y′′2 · · ·+ ε(y0 + εy1 + ε2y2 + . . . )2 = 0

y′′0 + εy′′1 + ε2y′′2 · · ·+ ε(y20 + ε2y21 + ε4y22 + 2εy0y1 + 2ε3y1y2 + 2ε2y0y2 + . . . ) = 0
(3.14)

Step 2: Collecting like powers of ε:

y′′0 + ε(y′′1 + y20) + ε2(y′′2 + 2y0y1) + ε3(y′′3 + y21 + 2y0y2) + · · · = 0 (3.15)

Step 3: Setting the coefficients of each power of ε to 0 and satisfying the relevant boundary
conditions for every order of ε yields:

O(ε0) : y′′0 = 0 =⇒ y0 = 1

O(ε1) : y′′1 + y20 = 0 =⇒ y1 = −t
2

2

O(ε2) : y′′2 + 2y0y1 = 0 =⇒ y2 =
t4

12

O(ε3) : y′′3 + y21 + 2y0y2 = 0 =⇒ y3 = − t
6

72

The solution y(t) to (3.13) is thus given by:

y(t) = 1− εt
2

2
+ ε2

t4

12
− ε3 t

6

72
+O(ε4). (3.16)

Figure 3.1 shows how well the power series method approximates the solution for
ε = 0.1. Despite its elegance, the power series method can only be applied when certain
conditions are satisfied. We elaborate more on this issue in the subsequent section.

3.4 Limitation of power series method

Consider the following algebraic equation:

εx2 + x− 1 = 0 (3.17)

A valid power series solution cannot be obtained for (3.17), because for ε = 0 the
equation has only one root. The exact solution of (3.17) is given by:

x± =
−1±

√
1 + 4ε

2ε
≈ 1± (1 + 2ε)

2ε
(3.18)

For ε = 0, one of the solutions is singular (this reflects the fact that for ε = 0 the

equation becomes x−1 = 0 which has one solution only) and x− =
1

ε
−1 has no expansion

near ε = 0. Thus, power series expansions are valid only for the solutions that prevail
when ε = 0. More sophisticated methods to tackle equations similar to (3.17) will be
discussed in the section (5).
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Figure 3.1: Numerical integration v/s power series method to solve (3.13) for ε = 0.1

3.5 Homework assignment 4

Solve the following equation by applying the power series method

y′ − y − εyt = 0; y(0) = 1. (3.19)

3.6 Bonus section: Solving inhomogeneous ODEs

An typical inhomogeneous ODE of second order is given:

d2y

dt2
+ a

dy

dt
+ by = f(t) (3.20)

Let the two independent solutions to (3.20) for f(t) = 0 be y1(t), y2(t) and the general
solution for f(t) 6= 0 be y(t) = αy1(t)+βy2(t)+yp(t) where yp(t) is any particular solution
to (3.20). In this section, we outline a recepie to find yp(t)

Let’s assume that yp(t) = c1(t)y1(t) + c2(t)y2(t), therefore:

y′p = c′1y1 + c1y
′
1 + c′2y2 + c2y

′
2.

Here we impose the following requirement:

c′1y1 + c′2y2 = 0 (3.21)

Following the requirement given by (3.21), the derivative of yp(t)
′ (i.e., the double

derivative of yp) is given by:

y′′p = c′1y
′
1 + c1 + y′′1 + c′2y

′
2 + c2y

′′
2 (3.22)

Since, yp is a solution to (3.20), we can write:

y′′p + ay′p + byp = f(t)
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Substituting, y′′p , y′p and yp in the aforementioned equation yields:

c′1y
′
1 + c1 + y′′1 + c′2y

′
2 + c2y

′′
2 + a(c1y

′
1 + c′2y2) + b(c1y1 + c2y2) = f(t)

=⇒ c1 (y′′1 + ay1 + by1)︸ ︷︷ ︸
0

+c2 (y′′2 + ay2 + by2)︸ ︷︷ ︸
0

+c′1y1 + c′2y
′
2 = f(t)

=⇒ c′1y
′
1 + c′2y

′
2 = f(t) (3.23)

Equation (3.23) is the second requirement, the two requirements can be cast as a
single matrix equation: (

y1 y2
y′1 y′2

)(
c′1
c′2

)
=

(
0
f

)
(
c′1
c′2

)
=

(
y1 y2
y′1 y′2

)−1(
0
f

)
(3.24)

The matrix equation, (3.24), can be solved to obtain c′1 and c′2 which can further be
integrated to obtain the unknown time dependent coefficients c1(t) and c2(t). This is
one of many recipes to ‘guess’ a particular solution to a second order ODE for which the
general solutions to the homogeneous part are known.

3.7 Homework assignment 5

In the non-dimensional framework, the equation of motion of a projectile launched
vertically from ground can be written as:

z′′(1 + εz)2 + 1 = 0; z(0) = 0, z′(0) = 1 (3.25)

where ε� 1.
Solve the above equation using the power series method to 2nd order and for different

values of ε, compare the power series solution with the numerical solution.

3.8 Asymptotic approximation

The key difference between the power series and asymptotic expansions can be bought
out using the following expression:

y(x) =
N∑
i=0

yi(x)εi. (3.26)

When (3.26) is referred to as a power series, N →∞ in while ε is fixed whereas when it
is referred to an in asymptotic expansion, N is fixed while ε→ 0.
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Chapter 4

Conservation laws and how to use
them

Up until this point, we have discussed in detail what the power series solutions to a
differential problem are and how can we use power series solutions to ‘solve’ differential
equations which do not have nice-looking regular solutions. However, power series
solutions are often tedious to calculate even for relatively simple differential equations.
A work around this problem is to switch to a more ‘geometric’ way of thinking. The
work done by Poincaré in late 1800s paved the foundation for this approach to analysing
differential equations. Asymptotic approximations play a crucial role while employing this
geometric approach and we will discuss it at length in the subsequent sections. Readers
interested in a historical overview and a (more) elaborate perspective on the geometric
approach to tackle differential equations should refer to Part I. and II. of Strogatz (2000).

4.1 Phase space diagrams

Any higher order differential equation can be cast into set of ODEs which is often refereed
to as a system of differential equations. The general form of this system is given by:

ẏ1 = f1(y1, y2, . . . , yN)

ẏ2 = f2(y1, y2, . . . , yN)

...

ẏN = fN(y1, y2, . . . , yN)

The typical approach to solving differential equations is to obtain the time dependent
solution to this system. The trajectories exhibited by these time-dependent solutions are
often tedious to obtain, moreover such solutions can often mask some crucial physical
properties of the (differential) system like periodicity and steady state behavior.

The geometric approach dictates that the differential equations be interpreted as a
space made up of xis and ẋis commonly known as the phase space. Each point in the
phase space represents a ‘state’ of the system i.e., at some given time t, any point on the
phase space trajectory of the system will represent a unique set of values (xi, ẋi) that the
system takes. For instance the phase space of the system:

ẏ = sin(y) (4.1)
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Figure 4.1: Phase space diagram corresponding to (4.1). The solid dots represent stable
fixed points and the hollow circles represent unstable fixed points

is depicted in Figure 4.1.
Each point on the trajectory represents the possible combinations of (y, ẏ) that the

system can take. As the system evolves in time i.e., as the value of y changes, the
corresponding value ẏ necessarily lies on this trajectory. Initial conditions of any system
represents a point on this trajectory.

Figure 4.2: Phase space diagrams corresponding to a) unstable b) stable and c) neutral
fixed point.

For certain values of y on this phase space trajectory, ẏ = 0; these points are called the
fixed points. Fixed points can be classified as stable or unstable. Whether a fixed point is
stable or unstable is determined by how the trajectory behaves immediately prior to and
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after the fixed point. For ẏ > 0, the ‘flow’ along the trajectory is +ve and if ẏ < 0 the
flow along the trajectory is −ve. In Figure 4.1, the black arrows along the ordinate show
the direction of this flow. The trajectory flows into (out of) the stable (unstable) fixed
points. Stable (Unstable) fixed points are marked by filled (hollow) circles. Stable fixed
points are often referred to as the attractors or sinks of the system, conversely, unstable
fixed points are referred to as repellers or sources. It is possible for a system not to flow
through a fixed point but rather revolve around it in the phase space, these points are
referred to as neutral fixed points. The nature of a fixed point can also be determined
by evaluating the temporal evolution of a system. If the system evolves towards a fixed
point in phase space with time, the fixed point is referrred to as a stable fixed point.
Conversely,if a system evolves away from a fixed point with time, the point is unstable.
Figure 4.2 depicts one: a) unstable, b) stable and c) neutral fixed point. The arrows
indicate the direction in which the system evolves with time.

Aside from stable, unstable and neutral ones there are other kinds of fixed points as
well; these will be discussed later. A fixed point can also be both stable and unstable.
As an exercise, the reader is encouraged to plot the phase space diagram corresponding
to ẏ = y2. What is the fixed point for this trajectory? What kind of fixed points is it –
stable/unstable/neutral?

There are other fixed points beside stable and unstable which will be discussed in the
due course of time. It is important to note that two trajectories in phase space can never
cross one another because at the point where they cross, the system will have two possible
directions of (ẏ, y) along which it can flow i.e., non-unique solutions. Fixed points are
of interest because there are only a certain number of ways in which the trajectory can
behave near a fixed point. We try to understand this with phase trajectories of a simple
pendulum.

4.2 Simple pendulum in phase space

Figure 4.3: Schematic of a simple pendulum

Figure 4.3 depicts schematic of a simple pendulum. The co-sinusoidal components
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of weight is balanced by the tension in the string i.e., T = mg cos θ and the sinusoidal
component of gravity accelerates the pendulum along the arc:

θ̈ = − g
L

sin θ. (4.2)

For small angles, θ � 1, sin θ ∼ θ. Substituting
g

L
= ω2 and assuming that the angle of

deviation is small yields:
θ̈ = −ω2θ (4.3)

The phase space trajectory of a simple pendulum will be a curve on the (θ̇, θ) plane.
Let’s try to manipulate equation (4.3) to obtain a curve on this plane.

θ̈ + ω2θ = 0

=⇒ 2θ̇ × θ̈ + 2θ̇ × ω2θ = 0

=⇒ d

dt
(θ̇2) + ω2 d

dt
(θ2) = 0

=⇒ d

dt
(θ̇2) +

d

dt
(ω2θ2) = 0

=⇒ θ̇2 + ω2θ2 = E (4.4)

For ω2 = 1, the expression given by (4.4) is the equation of a circle (of an ellipse for
ω2 6= 1) and E is the constant of integration. The phase space trajectories of a simple
pendulum for different values of initial conditions (represented by different energies E)
are depicted in the figure below.

Figure 4.4: Phase space trajectory of a simple pendulum for different initial conditions
(energy).

Devising an analytic expression for the trajectory of a system in phase-space is a often
not trivial, however, a lot of insight can be drawn from the behavior of the system near
critical points. The recipe to do so is as follows:

1. Rewrite the higher order differential equation(s) describing the system as a set of
multiple first order differential equations.
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2. Identify the critical points of the set of ODEs.

3. Linearize the RHS of each ODE and find the eigenvalues of the system.

We go back to the equation of motion of a simple pendulum, (4.2), and set
g

L
= ω2 = 1

to obtain:
θ̈ = − sin θ.

1: This second order differential equation can be re-written as the following set of
ODEs:

θ̇ = y (4.5)

ẏ = − sin θ (4.6)

2: There are multiple critical points for this system: (y = 0, θ = nπ) ,where n is any
integer.

3: Linearizing the sytem of ODEs, say around the critical point: (y = 0, θ = π) yields:

˙(π + δ) = δ̇ = y (4.7)

ẏ = − sin(π + δ) = −(sinπ cos δ + cos π sin δ) ≈ δ (4.8)

which, in the matrix formalism of differential equations can be written as:

˙(δ
y

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

M

(
δ
y

)
(4.9)

and the eigenvalues of M can be calculated by solving the equation: det(M−λI) = 0,
where det is the determinant, λ is the eigenvalue and I is identity matrix. The eigen
values obtained are: λ = ±1. The curve in the phase space will behave like the
function e±1 near the critical point (θ, θ̇) = (π, 0). This point where the system
shows growth and decay simultaneously is known as a saddle point.

Figure 4.5 shows the trajectories of the simple pendulum in phase space for different
set of initial conditions (representing different energies).

4.3 Damped pendulum

The equation of motion for a simple pendulum, given by (4.2), can be modified to add a
damping term:

θ̈ + γθ̇ + ω2 sin θ = 0 (4.10)

Step 1: For ω2 = 1, (4.10) can be re-written as the following set of ODEs, by substituting
θ̇ = y:

θ̇ = y (4.11)

ẏ = − sin θ − γy (4.12)
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Figure 4.5: Phase space plot for a pendulum where ω2 = 1. For each trajectory, squares
represent the initial condition and the arrows show the direction in which the system
evolves in the phase space with time.

Step 2: The critical points for this system is [y = 0, θ = sin−1(−γy) ≈ −γy − (γy)3

6
].

Step 3: Linearizing the system of ODEs, say around the critical point yields:

δ̇ = y (4.13)

ẏ = −δ − γy (4.14)

which is written in matrix formulation as:

˙(δ
y

)
=

(
0 1
−1 −γ

)
︸ ︷︷ ︸

M

(
δ
y

)
. (4.15)

The eigenvalues of M, calculated by solving the equation |M − λI| = 0, are: λ =

−γ
2
± i
√

1− γ2

4
. For γ � 1, the eigenvalues reduce to λ ≈ −γ

2
± i. In this limit

the system has two decaying and counter-rotating solutions (in the +θ and −θ
directions): exp

(
−γ

2
t− it

)
and exp

(
−γ

2
t+ it

)
4.4 Motion of a bead on a rotating planet

In the previous sections, we examined the dynamics of simple pendulum by identifying
critical points in the equations of motion and drawing the phase space portrait of the
system based on the behavior of the eigenvalues of the system near these fixed point. We
also identified that the energy (potential+kinetic) is a conserved quantity of the system
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Figure 4.6: Schematic of a bead moving on a friction-less planet

and it determines what the trajectory of the system will be in the phase space (see Figure
4.5).

We now try to do the same for a more complex system — equations of motion of a
bead on a rotating planet. The equations of motion for this bead is given by:

du

dt
= v sinφ

(
2Ω− u

a cosφ

)
(4.16)

dv

dt
= −u sinφ

(
2Ω +

u

a cosφ

)
(4.17)

dφ

dt
=
v

a
(4.18)

dλ

dt
=

u

a cosφ
. (4.19)

Here φ, λ are the latitudinal and longitudinal coordinates of the bead moving on a
planet of radius r and rotation frequency Ω, and u, v are the zonal and meridional velocity
components of the said bead. We non-dimensionalize the equations of motion by scaling

time over
1

2Ω
and u, v over 2Ωa to obtain the following non-dimensional equations:

du

dt
= v sinφ

(
1 +

u

cosφ

)
(4.20)

dv

dt
= −u sinφ

(
1 +

u

cosφ

)
(4.21)

dφ

dt
= v (4.22)

dλ

dt
=

u

cosφ
. (4.23)
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Our aim is to identify the conserved quantities in this system of equations. Since λ
does not apper on the RHS of any equation, we can identify that equation (4.23) does
not affect the solution of system and should not be used to find a conserved quantity. We
also note, some structural similarity between (4.20) and (4.21). Multiplying (4.20) with
u, (4.21) with v and adding the two yields:

u.
du

dt
+ v.

dv

dt
= 0

=⇒ d

dt

[
1

2
(u2 + v2)

]
= 0

=⇒ u2

2
+
v2

2
= E (4.24)

here E is the energy of the bead in motion. To come up with another conserved
quantity we try to eliminate the time dependence using the division operation and the
remaining combinations of equations. Consider two possibilities: (i) dividing (4.20) by
(4.22) and (ii) dividing (4.21) by (4.22). Alternative (ii) is not a viable approach because
the resulting equation has three unknowns. On the other hand, (i) yields:

du

dφ
= sinφ

(
1 +

u

cosφ

)
du

sinφ dφ
=

(
1 +

u

cosφ

)
du

−(cosφ)′
=

(
1 +

u

cosφ

)
,

substituting cosφ with s yields:

−du
ds

=
(

1 +
u

s

)
du

ds
+
u

s
= −1 (4.25)

To solve (4.25), we first find a solution to its homogeneous part.

du

ds
+
u

s
= 0

du

u
= −ds

s
lnu = lnD − ln s

u =
D

s

where D is a constant. A particular solution to (4.25) is u = −s
2

, the general solution

then becomes:

u =
D

s
− s

2
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substituting s = cosφ and simplifying further yields:

u =
2D − cos2 φ

2 cosφ

=⇒ 2u cosφ+ cos2 φ = 2D

=⇒ cosφ

(
cosφ

2
+ u

)
= D. (4.26)

Equations (4.24), and (4.26) are the two conserved quantities corresponding to the
system of equations under consideration. It is fairly obvious to see that (4.24) is the
non-dimenionalized version of energy conservation. In the spirit of ascribing physical
meaning to an equation, we ask the question: “what does the quantity given by LHS of
(4.26) represent?”

For any (classical) moving particle, the two obvious conserved quantities which come
to a natural scientist’s mind are energy and momentum. However, for any particle subject
to rotational motion about an axis, angular momentum is the second conserved quantity.
Angular momentum is defined as:

~µ = ~r × ~v (4.27)

Any point at latitude φ on a planet is moving eastward with the dimensional velocity
ue = Ωa cosφ. Since we scale the speed on 2Ωa, the non-dimensional eastward velocity of

the point is ue =
cosφ

2
. The total eastward velocity component of the bead at that point

is thus (ue+u). We now need the component of the radius vector (~a) perpendicular to the
axis of rotation, which is a cosφ in dimensional units or simply cosφ in non-dimensional

ones. Multiplying (ue+u) with cosφ yields cosφ

(
cosφ

2
+ u

)
: the angular momentum of

a bead moving on a rotating planet, which is the second conserved quantity corresponding
to the system of equations under consideration.

Figure 4.7: Illustration of the eastward velocity of a bead along the latitudinal circle of
radius a cos(φ)
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Identifying conserved quantities not only reduces the number of equations describing
any physical system but also helps identify certain dynamical aspects of the said system
which are otherwise difficult to unveil. We further elaborate on this by considering the
motion of the bead which starts moving at t = 0 from longitude λ(t = 0) = 0 with some
eastward velocity u(t = 0) > 0 and no northward velocity v(t = 0) = 0 The bead’s initial

latitude φ can vary from 0 to
π

2
.

If the the bead is at the Equator (φ = 0), it has to necessarily move eastward because
if it moves northward cosφ and in turn u decreases, which violates the conservation of
D. Figure 4.8 and 4.9 and shows the trajectory of the bead when it is launched with an
initial (u0,v0) = (0.1,0) from different latitudes.

Figure 4.8(a)-(d) and 4.9(e) illustrate that the bead can cross the Equator for different
values of u and φ. We now determine the latitude at which if the bead has an initial
westward velocity of u0, it will never cross the Equator and will perpetually move eastward
along the Equator with the same speed (u0). For this exercise, the initial and final D of

the bead are given by φ0 is D(t = 0) = cosφ0

(
cosφ0

2
+ u0

)
and D(t→∞) =

(
1

2
− u0

)
respectively. Equating the two and solving for φ0 yields:

cosφ0

(
cosφ0

2
+ u0

)
=

(
1

2
− u0

)
=⇒ u0(1 + cosφ0) =

1

2

(
1− cos2 φ0

)
φ0 = cos−1 (1− 2u0) . (4.28)

Corollary, a bead with an initial westward velocity of u0 =
1− cosφ0

2
, where φ0 is

the latitude, will not cross the Equator and travel along it perpetually in the eastward
direction.

In the last part of this chapter, we will determine the fixed points of the system of

equations (4.20) - (4.23). To do so we write u as u =
D

cosφ
− cosφ

2
and substitute it in

(4.23), which yields:

dλ

dt
=

1

cosφ

(
D

cosφ
− cosφ

2

)
dλ

dt
=

(
D

cos2 φ
− 1

2

)
(4.29)

Substituting the expression for u in (4.21) and simplifying yields:

dv

dt
= −

(
D

cosφ
− cosφ

2

)
sinφ

(
1 +

u

cosφ

)
dv

dt
=

sin 2φ

2

(
1

4
− D2

cos4 φ

)
(4.30)

Equations (4.29) and (4.30) along with

dφ

dt
= v (4.31)

dD

dt
= 0 (4.32)
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Figure 4.8: Trajectories of a bead starting with an initial Eastward velocity with
increasing latitudes. [Borrowed from Paldor and Killworth (1988) with consent from
the corresponding author]

are a second set of equations that describe the motion of bead on a rotating planet.
In this system, however, one of the conserved quantities (D) is a part of the system and
not an independent quantity formulated from the dependent variables in the system [as
is the case of equations (4.20) - (4.23)]. In the new framework, the second conserved
quantity, E, is given by:

E =
v2

2
+

1

2

(
D

cosφ
− cosφ

2

)2

(4.33)

.
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Figure 4.9: Figure 4.8 continued

4.5 Homework assignment 6

Derive the system of equations which describe the motion of a bead on the Equatorial β
plane i.e., cosφ = 1 and sinφ ≈ φ. Also find the expression for the conserved quantities.

4.6 Phase space behavior of the bead on a rotating

planet

In the next part of this chapter, we are going to:

• identify the fixed points corresponding to the system of equations (4.29)-(4.32) and
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• determine the behavior of the system near the fixed points.

In a steady state,
dv

dt
= 0, which is true when v = 0 (trivial) or when

sin 2φ

2

(
1

4
− D2

cos4 φ

)
= 0. Examining the later expression further yields two possibilities:

sin 2φ = 0

φs = nπ (4.34)

or

1

4
− D2

cos4 φ
= 0

φs = cos−1(±
√

2D) (4.35)

The solution φs = nπ has only one valid solution φs = 0 i.e., the Equator because

φ varies between
−π
2

and
π

2
. The solution φs = cos−1(±

√
2D) is only valid for D <

1

2
.

Near φ = φs the function F (φ) =
sin 2φ

2

(
1

4
− D2

cos4 φ

)
is expanded to first order by:

F (φ) = F (φs)︸ ︷︷ ︸
0

+
∂F

∂φ

∣∣∣
φ=φs

(φ− φs) + . . . . (4.36)

Evaluating
∂F

∂φ
yields:

∂F

∂φ
=

∂

∂φ

(
sin 2φ

2

)
.

[
1

4
− D2

cos4 φ

]
+

sin 2φ

2
.
∂

∂φ

[
1

4
− D2

cos4 φ

]
= cos 2φ

[
1

4
− D2

cos4 φ

]
+

sin 2φ

2
.
[
−4D2 tanφ sec4 φ

]
= cos 2φ

[
1

4
− D2

cos4 φ

]
− sin2 φ

4D2

cos4 φ
. (4.37)

Thus,
∂F

∂φ

∣∣∣
φs=0

=
1

4
−D2. (4.38)

Substituting from (4.38) in (4.36) yields:

F (φ→ φs) =

(
1

4
−D2

)
(φ− φs) (4.39)

For D2 >
1

4
, the behavior of the solution is elliptical and for D2 <

1

4
, the behavior is

hyperbolic and D =
1

2
is the bifurcation point.
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We now discuss the behavior of the solution for the second case i.e.,
D2

cos4 φs
=

1

4
. The

derivative
∂F

∂φ
given by (4.6) simplifies to:

∂F

∂φ

∣∣∣
φs 6=0

= cos 2φ

[
1

4
− D2

cos4 φs

]
︸ ︷︷ ︸

0

− sin2 φs
4D2

cos4 φs︸ ︷︷ ︸
1

∂F

∂φ

∣∣∣
φs 6=0

= − sin2 φs (4.40)
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Chapter 5

The WKB method

As mentioned briefly in subsection 3.4 the straightforward approach of the simple, regular
perturbation, methods cannot always capture the complicated behavior of a solution
near a singular point of a differential equation. There are two main reasons for the
poor representation of the dynamical behavior of the solution near a singular point:
dispersion and dissipation. To understand the subtleties associated with these two
extreme behaviors, it is instructive to examine the solutions of the linear, 2nd order, ODE

ε
d2y

dt2
− y = 0 in the ε→ 0 limit. The two solutions of this equation are: y±e

±t/
√
ε where

y± are the two amplitudes. When ε → 0+ (i.e., ε approaches 0 through a set of positive
numbers), the solution y−e

−t/
√
ε vanishes rapidly (dissipates) when t increases from 0 i.e.,

it has a local breakdown near the t = 0 point. On the other hand when ε → 0− (i.e., ε
approaches 0 through a set of negative numbers) y(t) ∝ sin(t/

√
ε) undergoes “infinitely”

many oscillations over the [0, 1] t-interval. This is called dispersion and the breakdown
of y(t) in this case occurs over an O(1) interval of t i.e., the breakdown of y(t) is global
instead of local.

The WKB (named after Wentzel, Kramers and Brillouin; sometimes referred to
as WKBJ to include Jeffreys) method is designed to handle both local and global
breakdowns of solutions by utilizing their unique, exponential, form e−t/

√
ε. The method

has been employed in numerous fields in the natural sciences and has yielded a wealth of
information on the leading order behavior of solutions to complicated ODEs and PDEs
including nonlinear equations, equations with non-constant coefficients and boundary
value problems. Though any particular application of the method is unique, the approach
underlying the application is fairly uniform and it follows the general structure suggested
by the onset of dissipation or dispersion when the small parameter, ε, tends to 0. Both
dissipation and dispersion are characterized by exponential behavior where the exponent
is real in dispersion and imaginary in dissipation.

Thus, to demonstrate the general approach of the WKB method, consider the
exponential form:

y(t) = A(t)eS(t)/δ, δ → 0+.

The phase, S(t), is considered slowly varying in the breakdown region. As described
above, when S(t) is real, there is a boundary region of thickness δ in which y(t) dissipates
and when S(t) is imaginary, there is a region of rapid oscillation (dissipation) where y(t)
has a period of order δ. For constant S(t) the solution is characterized by the slowly
varying amplitude, A(t).

These considerations lead to the search of solutions to a differential problem of the
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general form of an exponential of a power series in a small parameter δ:

y(t) ∼ exp

(
1

δ

∞∑
n=0

δnSn(t)

)
, δ → 0, (5.1)

where Sn(t) are the coefficient functions of the power series expansion and the small
parameter δ is set by the particular form of the differential problem being solved. The
following 2nd order singular ODE exemplifies the application of the WKB method. The
approximate solutions to the general (Schrödinger) equation

ε2y′′ = Q(t)y, Q(t) 6= 0, (5.2)

are easily found using the WKB method. Differentiation of the power series in equation
(5.1) yields:

y′ ∼

(
1

δ

∞∑
n=0

δnS ′n

)
exp

(
1

δ

∞∑
n=0

δnSn

)
, δ → 0 (5.3)

and

y′′ ∼

 1

δ2

(
∞∑
n=0

δnS ′n

)2

+
1

δ

∞∑
n=0

δnS ′′n

 exp

(
1

δ

∞∑
n=0

δnSn

)
, δ → 0. (5.4)

Substituting these expressions in the differential equation (5.2) and dividing off the
exponential factors yields:

ε2

δ2
S ′20 +

2ε2

δ
S ′0S

′
1 +

ε2

δ
S ′′0 + . . . = Q(t). (5.5)

Since δ is small, the largest term on the LHS is
ε2

δ2
S ′0 and since all other terms on the

LHS are smaller than the first by order δ or higher, this leading term must balance the
RHS (this is where the restriction Q(t) 6= 0 is employed!) so we must set δ = ε in order
for this term to balance Q(t). Once the relation between δ and ε has been established,
the terms on the LHS can be arranged in increasing powers of ε (or δ) and the sequence
of equations determines the coefficient functions S0, S1, S2, . . . as follows:

O(ε0) : S ′20 = Q(t), (5.6)

O(ε1) : 2S ′0S
′
1 + S ′′0 = 0, (5.7)

O(εn) : 2S ′0S
′
n + S ′′n−1 +

n−1∑
j=1

S ′jS
′
n−j = 0, n ≥ 2. (5.8)

The two basic solutions of (5.6), called the eikonal equation, are:

S0(t) = ±
∫ t

0

√
Q(τ)dτ. (5.9)

Substitution of either of the S0(t) solutions in the linear equation (5.7), called the
transport equation, yields the basic solution of S1(t):
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S1(t) = −1

4
lnQ(t). (5.10)

The substitution of the two solutions of S0 and the corresponding expression of S1 in the
power series expansion (5.1) then yields the approximate solution (to orders δ−1 and δ0 )

y(t) = c1Q
− 1

4 (t) exp

[
1

ε

∫ t

t0

√
Q(τ)dτ

]
+ c2Q

− 1
4 (t) exp

[
−1

ε

∫ t

t0

√
Q(τ)dτ

]
, (5.11)

where c1 and c2 are the two constants of integration, determined from two associated
initial or boundary conditions. Note that the solutions of S0 and S1 include only the
fundamental solutions while the constants of integration are introduced in the expression
of y(t).

As demonstrated by this example, the general approach in the application of the WKB
method consists of the following steps:

1. Expand the sought solution function in power series as in equation (5.1).

2. Set the relation between ε (from the equation) and δ (from the power series
expansion) by requiring that the O(1) terms in the equation balance the leading
order term(s) where the two parameters appear i.e., term(s) of (lowest power of ε)
× (highest power of 1/δ).

3. Solve the sequence of equations for the coefficient functions Sn(t) derived by
balancing terms of order εn.

4. Substituting the expressions of Sn(t) in (5.2) and determining the constants of
integration from the initial or boundary yields the approximate solution to the
differential problem (equation and associated initial or boundary conditions).

In the remainder of this chapter examine several complex differential problems that
exemplify the way the WKB method is applied in deriving approximate solutions to
such problems. The derived analytic approximations are compared to direct numerical
solutions of the equation, which demonstrates the unparalleled power of the WKB method
in solving singular problems with rapid dispersion or dissipation.

5.1 Example 1: Solve ε2y′′ = y [y(0) = 1, y(1) = exp(1/ε)]

using the WKB method

This is a boundary value problem in which the differential equation has the form of (5.2)
with Q(t) = 1. The solution is detailed below by following the 4 steps outlined at the
end of the previous subsection.

Step 1. Assume the solution has the general form y(t) = exp

[
1

δ
(S0 + δS1 + δ2S2 . . .)

]
where Sn(t) vary slowly with time.
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Step 2. To establish the relation between δ and ε, substitute this form of the solution in
the differential equation i.e.,:

ε2
d2

dt2
exp

[
1

δ

(
S0 + δS1 + δ2S2 . . .

)]
= exp

[
1

δ

(
S0 + δS1 + δ2S2 . . .

)]
. (5.12)

Carrying out the time differentiation and dividing off the common exponential
coefficient then yields:

ε2

δ2
S ′20 +

2ε2

δ
S ′0S

′
1 +

ε2

δ
S ′′0 + . . . = 1. (5.13)

The leading order term on the LHS is ε2

δ2
and for this term to balance the O(1) term

on the RHS,
ε2

δ2
has to equal 1. Substituting ε = δ then yields:

O(ε0) : S ′20 = 1,

O(ε1) : 2S ′0S
′
1 + S ′′0 = 0,

Step 3. Solving the above equations for S0 and S1 yields:

O(ε0) : S0(t) = ±t
O(ε1) : 2AS ′1 + 0 = 0 =⇒ S1(t) = constant

Step 4. Substituting δ = ε, S0(t) = t and S1(t) = constant into the solution y(t) =

exp

[
1

δ
(S0 + δS1 + . . .)

]
yields: y+(t) = exp

[(
t

ε

)
+ c

]
. Similarly, we can

obtain y−(t) = exp

[(
−t
ε

)
+ c

]
. Assuming that the general solution is a linear

combination of y+(t) and y−(t) i.e., y(t) = c1y+(t) + c2y−(t) and applying the

boundary conditions y(0) = 1 and y(1) = exp(1/ε) yields y(t) = exp

(
t

ε

)
which is

the exact solution of the linear, constant coefficient equation, differential eigenvalue
problem. In this simple example, the WKB method yielded the exact solution of the
problem! A somewhat more complicated problem will be solved in the next example
and its WKB approximate solution will be compared to a numerical solution of the
problem.

5.2 Example 2: Solve ε2y′′ = (1+t2)2y [y(0) = 0, y′(0) = 1]

using the WKB method

This is an initial value problem in which the differential equation has the form of (5.2)
with Q(t) = (1 + t2)2. The solution is detailed below by following the 4 steps outlined at
the end of the previous subsection.

Step 1. Assume the solution has the general form y(t) = exp

[
1

δ
(S0 + δS1 + δ2S2 . . .)

]
where Sn(t) vary slowly with time.

37



Step 2. To establish the relation between δ and ε, substitute this form of the solution in
the differential equation i.e.,:

ε2
d2

dt2
exp

[
1

δ

(
S0 + δS1 + δ2S2 . . .

)]
= (1 + t2)2 exp

[
1

δ

(
S0 + δS1 + δ2S2 . . .

)]
.

(5.14)
Carrying out the time differentiation and dividing off the common exponential
coefficient then yields:

ε2

δ2
S ′20 +

2ε2

δ
S ′0S

′
1 +

ε2

δ
S ′′0 + . . . = (1 + t2)2. (5.15)

The leading order term on the LHS is
ε2

δ2
and for this term to balance the O(1)

term on the RHS,
ε2

δ2
has to equal 1. Substituting ε = δ then yields:

O(ε0) : S ′20 = (1 + t2)2,

O(ε1) : 2S ′0S
′
1 + S ′′0 = 0,

Step 3. Solving the above equations for S0 and S1 yields:

O(ε0) : S0(t) = ±
(
t+

t3

3

)
O(ε1) : 2(1 + t2)S ′1 + 2t = 0 =⇒ S1(t) = −1

2
log(1 + t2)

Step 4. Substituting δ = ε, S0(t) = ±
(
t+

t3

3

)
and S1(t) = −1

2
log(1 + t2) into the

general form y(t) = exp

[
1

δ
(S0 + δS1 + . . .)

]
yields the two solutions y+(t) =

1√
1 + t2

exp

[
1

ε

(
t+

t3

3

)]
and y−(t) =

1√
1 + t2

exp

[
−1

ε

(
t+

t3

3

)]
. The resulting

general solution of y(t), which the linear combination of the two basic forms, y+(t)
and y−(t) is:

y(t) = c1y+(t) + c2y−(t)

=
1√

1 + t2

(
c1 exp

[
1

ε

(
t+

t3

3

)]
+ c2 exp

[
−1

ε

(
t+

t3

3

)])
.

Applying the initial condition y(0) = 0 yields c1+c2 = 0 =⇒ c1 = −c2. Therefore,

y(t) can be rewritten as: y(t) =
2c1√
1 + t2

sinh

[
1

ε

(
t+

t3

3

)]
(recall: ex − e−x =

2 sinh(x)). Applying the other initial conditions, y′(0) = 1, yields
2c1
ε

= 1 =⇒
2c1 = ε, so the particular solution that satisfies both initial conditions is: y(t) =

ε√
1 + t2

sinh

[
1

ε

(
t+

t3

3

)]
.
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There is an excellent agreement between the solution to the initial value problem
obtained using numerical integration and the leading order WKB approximation (the
reader should verify this as an exercise!). Fig. 5.1 shows the relative error between
the numerical solution and the WKB approximation for different values of ε. Even for
ε = 0.4 � 0 the magnitude of the maximum relative error between solutions is < 5% <
O(0.42) (the dotted-dashed green line, Fig. 5.1).

Figure 5.1: Relative error between the numerically obtained solution and the leading
order WKB approximation for differnt values of ε.

5.3 Homework assignment 7

Find the WKB solutions of the following equation:

εy′′ + (c− ε)y′ − ay = 0

where a and c are constants. For different values of a and c, compare the numerical
solution to the equation with the WKB solutions and determine the values of ε for which
the WKB solutions are good approximations (i.e., the relative error is < O(ε2)).
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